LiePolynomial(VarSet, R)ΒΆ
xlpoly.spad line 449 [edit on github]
VarSet: OrderedSet
This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by C
. Reutenauer (Oxford science publications). Author: Michel Petitot (petitot@lifl.fr
).
- 0: %
from AbelianMonoid
- *: (%, R) -> %
from RightModule R
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, R) -> % if R has Field
from LieAlgebra R
- coef: (XRecursivePolynomial(VarSet, R), %) -> R
from FreeLieAlgebra(VarSet, R)
- coefficient: (%, LyndonWord VarSet) -> R
from FreeModuleCategory(R, LyndonWord VarSet)
- coefficients: % -> List R
from FreeModuleCategory(R, LyndonWord VarSet)
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: % -> XDistributedPolynomial(VarSet, R)
from FreeLieAlgebra(VarSet, R)
- coerce: % -> XRecursivePolynomial(VarSet, R)
from FreeLieAlgebra(VarSet, R)
- coerce: VarSet -> %
from FreeLieAlgebra(VarSet, R)
- construct: (%, %) -> %
from LieAlgebra R
- construct: (%, LyndonWord VarSet) -> %
construct(x, y)
returns the Lie bracket[x, y]
.
- construct: (LyndonWord VarSet, %) -> %
construct(x, y)
returns the Lie bracket[x, y]
.
- construct: (LyndonWord VarSet, LyndonWord VarSet) -> %
construct(x, y)
returns the Lie bracket[x, y]
.- construct: List Record(k: LyndonWord VarSet, c: R) -> %
from IndexedProductCategory(R, LyndonWord VarSet)
- constructOrdered: List Record(k: LyndonWord VarSet, c: R) -> %
from IndexedProductCategory(R, LyndonWord VarSet)
- degree: % -> NonNegativeInteger
from FreeLieAlgebra(VarSet, R)
- eval: (%, List VarSet, List %) -> %
from FreeLieAlgebra(VarSet, R)
- eval: (%, VarSet, %) -> %
from FreeLieAlgebra(VarSet, R)
- latex: % -> String
from SetCategory
- leadingCoefficient: % -> R
from IndexedProductCategory(R, LyndonWord VarSet)
- leadingMonomial: % -> %
from IndexedProductCategory(R, LyndonWord VarSet)
- leadingSupport: % -> LyndonWord VarSet
from IndexedProductCategory(R, LyndonWord VarSet)
- leadingTerm: % -> Record(k: LyndonWord VarSet, c: R)
from IndexedProductCategory(R, LyndonWord VarSet)
- LiePoly: LyndonWord VarSet -> %
from FreeLieAlgebra(VarSet, R)
- LiePolyIfCan: XDistributedPolynomial(VarSet, R) -> Union(%, failed)
LiePolyIfCan(p)
returnsp
in Lyndon basis ifp
is a Lie polynomial, otherwise"failed"
is returned.
- linearExtend: (LyndonWord VarSet -> R, %) -> R
from FreeModuleCategory(R, LyndonWord VarSet)
- listOfTerms: % -> List Record(k: LyndonWord VarSet, c: R)
from IndexedDirectProductCategory(R, LyndonWord VarSet)
- lquo: (XRecursivePolynomial(VarSet, R), %) -> XRecursivePolynomial(VarSet, R)
from FreeLieAlgebra(VarSet, R)
- map: (R -> R, %) -> %
from IndexedProductCategory(R, LyndonWord VarSet)
- mirror: % -> %
from FreeLieAlgebra(VarSet, R)
- monomial?: % -> Boolean
from IndexedProductCategory(R, LyndonWord VarSet)
- monomial: (R, LyndonWord VarSet) -> %
from IndexedProductCategory(R, LyndonWord VarSet)
- monomials: % -> List %
from FreeModuleCategory(R, LyndonWord VarSet)
- numberOfMonomials: % -> NonNegativeInteger
from IndexedDirectProductCategory(R, LyndonWord VarSet)
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- reductum: % -> %
from IndexedProductCategory(R, LyndonWord VarSet)
- rquo: (XRecursivePolynomial(VarSet, R), %) -> XRecursivePolynomial(VarSet, R)
from FreeLieAlgebra(VarSet, R)
- sample: %
from AbelianMonoid
- smaller?: (%, %) -> Boolean if R has Comparable
from Comparable
- subtractIfCan: (%, %) -> Union(%, failed)
- support: % -> List LyndonWord VarSet
from FreeModuleCategory(R, LyndonWord VarSet)
- trunc: (%, NonNegativeInteger) -> %
from FreeLieAlgebra(VarSet, R)
- varList: % -> List VarSet
from FreeLieAlgebra(VarSet, R)
- zero?: % -> Boolean
from AbelianMonoid
BiModule(R, R)
Comparable if R has Comparable
FreeLieAlgebra(VarSet, R)
FreeModuleCategory(R, LyndonWord VarSet)
IndexedDirectProductCategory(R, LyndonWord VarSet)
IndexedProductCategory(R, LyndonWord VarSet)
Module R