LieExponentials(VarSet, R, Order)ΒΆ
xlpoly.spad line 982 [edit on github]
VarSet: OrderedSet
R: Join(CommutativeRing, Module Fraction Integer)
Order: PositiveInteger
Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than Order
are assumed to be null. The implementation inherits from the XPBWPolynomial domain constructor: Lyndon coordinates are exponential coordinates of the second kind. Author: Michel Petitot (petitot@lifl.fr
).
- 1: %
from MagmaWithUnit
- ^: (%, Integer) -> %
from Group
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: % -> XDistributedPolynomial(VarSet, R)
coerce(g)
returns the internal representation ofg
.
- coerce: % -> XPBWPolynomial(VarSet, R)
coerce(g)
returns the internal representation ofg
.
- commutator: (%, %) -> %
from Group
- exp: LiePolynomial(VarSet, R) -> %
exp(p)
returns the exponential ofp
.
- identification: (%, %) -> List Equation R
identification(g, h)
returns the list of equationsg_i = h_i
, whereg_i
(resp.h_i
) are exponential coordinates ofg
(resp.h
).
- latex: % -> String
from SetCategory
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- listOfTerms: % -> List Record(k: PoincareBirkhoffWittLyndonBasis VarSet, c: R)
listOfTerms(p)
returns the internal representation ofp
.
- log: % -> LiePolynomial(VarSet, R)
log(p)
returns the logarithm ofp
.
- LyndonBasis: List VarSet -> List LiePolynomial(VarSet, R)
LyndonBasis(lv)
returns the Lyndon basis of the nilpotent free Lie algebra.
- LyndonCoordinates: % -> List Record(k: LyndonWord VarSet, c: R)
LyndonCoordinates(g)
returns the exponential coordinates ofg
.
- mirror: % -> %
mirror(g)
is the mirror of the internal representation ofg
.
- one?: % -> Boolean
from MagmaWithUnit
- recip: % -> Union(%, failed)
from MagmaWithUnit
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from MagmaWithUnit
- varList: % -> List VarSet
varList(g)
returns the list of variables ofg
.