LieAlgebra RΒΆ
xlpoly.spad line 299 [edit on github]
The category of Lie Algebras. It is used by the following domains of non-commutative algebra: LiePolynomial and XPBWPolynomial. Author : Michel Petitot (petitot@lifl.fr
).
- 0: %
from AbelianMonoid
- *: (%, R) -> %
from RightModule R
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, R) -> % if R has Field
x/r
returns the division ofx
byr
.
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- construct: (%, %) -> %
construct(x, y)
returns the Lie bracket ofx
andy
.
- latex: % -> String
from SetCategory
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- sample: %
from AbelianMonoid
- subtractIfCan: (%, %) -> Union(%, failed)
- zero?: % -> Boolean
from AbelianMonoid
BiModule(R, R)
Module R