# PositiveIntegerΒΆ

PositiveInteger provides functions for positive integers.

1: %

from MagmaWithUnit

*: (%, %) -> %

from Magma

*: (PositiveInteger, %) -> %

from AbelianSemiGroup

+: (%, %) -> %

from AbelianSemiGroup

<=: (%, %) -> Boolean

from PartialOrder

<: (%, %) -> Boolean

from PartialOrder

=: (%, %) -> Boolean

from BasicType

>=: (%, %) -> Boolean

from PartialOrder

>: (%, %) -> Boolean

from PartialOrder

^: (%, NonNegativeInteger) -> %

from MagmaWithUnit

^: (%, PositiveInteger) -> %

from Magma

~=: (%, %) -> Boolean

from BasicType

coerce: % -> OutputForm
convert: % -> InputForm
gcd: (%, %) -> %

`gcd(a, b)` computes the greatest common divisor of two positive integers `a` and `b`.

hash: % -> SingleInteger

from Hashable

hashUpdate!: (HashState, %) -> HashState

from Hashable

latex: % -> String

from SetCategory

leftPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

leftPower: (%, PositiveInteger) -> %

from Magma

leftRecip: % -> Union(%, failed)

from MagmaWithUnit

max: (%, %) -> %

from OrderedSet

min: (%, %) -> %

from OrderedSet

one?: % -> Boolean

from MagmaWithUnit

qcoerce: Integer -> %

`qcoerce(n)` coerces `n` to `\%` trusting that `n` is positive

recip: % -> Union(%, failed)

from MagmaWithUnit

rightPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

rightPower: (%, PositiveInteger) -> %

from Magma

rightRecip: % -> Union(%, failed)

from MagmaWithUnit

sample: %

from MagmaWithUnit

smaller?: (%, %) -> Boolean

from Comparable

AbelianSemiGroup

BasicType

CommutativeStar

Comparable

Hashable

Magma

MagmaWithUnit

Monoid

OrderedAbelianSemiGroup

OrderedMonoid

OrderedSemiGroup

OrderedSet

PartialOrder

SemiGroup

SetCategory

TwoSidedRecip