FreeLieAlgebra(VarSet, R)ΒΆ

xlpoly.spad line 325 [edit on github]

The category of free Lie algebras. It is used by domains of non-commutative algebra: LiePolynomial and XPBWPolynomial. Author: Michel Petitot (petitot@lifl.fr)

0: %

from AbelianMonoid

*: (%, R) -> %

from RightModule R

*: (Integer, %) -> %

from AbelianGroup

*: (NonNegativeInteger, %) -> %

from AbelianMonoid

*: (PositiveInteger, %) -> %

from AbelianSemiGroup

*: (R, %) -> %

from LeftModule R

+: (%, %) -> %

from AbelianSemiGroup

-: % -> %

from AbelianGroup

-: (%, %) -> %

from AbelianGroup

/: (%, R) -> % if R has Field

from LieAlgebra R

=: (%, %) -> Boolean

from BasicType

~=: (%, %) -> Boolean

from BasicType

coef: (XRecursivePolynomial(VarSet, R), %) -> R

coef(x, y) returns the scalar product of x by y, the set of words being regarded as an orthogonal basis.

coerce: % -> OutputForm

from CoercibleTo OutputForm

coerce: % -> XDistributedPolynomial(VarSet, R)

coerce(x) returns x as distributed polynomial.

coerce: % -> XRecursivePolynomial(VarSet, R)

coerce(x) returns x as a recursive polynomial.

coerce: VarSet -> %

coerce(x) returns x as a Lie polynomial.

construct: (%, %) -> %

from LieAlgebra R

degree: % -> NonNegativeInteger

degree(x) returns the greatest length of a word in the support of x.

eval: (%, List VarSet, List %) -> %

eval(p, [x1, ..., xn], [v1, ..., vn]) replaces xi by vi in p.

eval: (%, VarSet, %) -> %

eval(p, x, v) replaces x by v in p.

latex: % -> String

from SetCategory

LiePoly: LyndonWord VarSet -> %

LiePoly(l) returns the bracketed form of l as a Lie polynomial.

lquo: (XRecursivePolynomial(VarSet, R), %) -> XRecursivePolynomial(VarSet, R)

lquo(x, y) returns the left simplification of x by y.

mirror: % -> %

mirror(x) returns Sum(r_i mirror(w_i)) if x is Sum(r_i w_i).

opposite?: (%, %) -> Boolean

from AbelianMonoid

rquo: (XRecursivePolynomial(VarSet, R), %) -> XRecursivePolynomial(VarSet, R)

rquo(x, y) returns the right simplification of x by y.

sample: %

from AbelianMonoid

subtractIfCan: (%, %) -> Union(%, failed)

from CancellationAbelianMonoid

trunc: (%, NonNegativeInteger) -> %

trunc(p, n) returns the polynomial p truncated at order n.

varList: % -> List VarSet

varList(x) returns the list of distinct entries of x.

zero?: % -> Boolean

from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianSemiGroup

BasicType

BiModule(R, R)

CancellationAbelianMonoid

CoercibleTo OutputForm

LeftModule R

LieAlgebra R

Module R

RightModule R

SetCategory