JetBundlePolynomial(R, JB)ΒΆ
jet.spad line 6455 [edit on github]
R: Ring
JetBundlePolynomial implements polynomial sections over a jet bundle. The order is not fixed, thus jet variables of any order can appear.
- 0: %
 from AbelianMonoid
- 1: %
 from MagmaWithUnit
- *: (%, %) -> %
 from Magma
- *: (%, Fraction Integer) -> % if R has Algebra Fraction Integer
 from RightModule Fraction Integer
- *: (%, Integer) -> % if R has LinearlyExplicitOver Integer
 from RightModule Integer
- *: (%, R) -> %
 from RightModule R
- *: (Fraction Integer, %) -> % if R has Algebra Fraction Integer
 from LeftModule Fraction Integer
- *: (Integer, %) -> %
 from AbelianGroup
- *: (NonNegativeInteger, %) -> %
 from AbelianMonoid
- *: (PositiveInteger, %) -> %
 from AbelianSemiGroup
- *: (R, %) -> %
 from LeftModule R
- +: (%, %) -> %
 from AbelianSemiGroup
- -: % -> %
 from AbelianGroup
- -: (%, %) -> %
 from AbelianGroup
- /: (%, R) -> % if R has Field
 from AbelianMonoidRing(R, IndexedExponents JB)
- ^: (%, NonNegativeInteger) -> %
 from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
 from Magma
- annihilate?: (%, %) -> Boolean
 from Rng
- antiCommutator: (%, %) -> %
 
- associates?: (%, %) -> Boolean
 from EntireRing
- associator: (%, %, %) -> %
 from NonAssociativeRng
- autoReduce: List % -> List %
 from JetBundleFunctionCategory JB
- binomThmExpt: (%, %, NonNegativeInteger) -> %
 from FiniteAbelianMonoidRing(R, IndexedExponents JB)
- characteristic: () -> NonNegativeInteger
 from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit or R has CharacteristicNonZero
 
- class: % -> NonNegativeInteger
 from JetBundleFunctionCategory JB
- coefficient: (%, IndexedExponents JB) -> R
 from AbelianMonoidRing(R, IndexedExponents JB)
- coefficient: (%, JB, NonNegativeInteger) -> %
 from MaybeSkewPolynomialCategory(R, IndexedExponents JB, JB)
- coefficient: (%, List JB, List NonNegativeInteger) -> %
 from MaybeSkewPolynomialCategory(R, IndexedExponents JB, JB)
- coefficients: % -> List R
 from FreeModuleCategory(R, IndexedExponents JB)
- coerce: % -> %
 from Algebra %
- coerce: % -> OutputForm
 from CoercibleTo OutputForm
- coerce: Fraction Integer -> % if R has Algebra Fraction Integer or R has RetractableTo Fraction Integer
 - coerce: Integer -> %
 from NonAssociativeRing
- coerce: JB -> %
 from CoercibleFrom JB
- coerce: R -> %
 from Algebra R
- commutator: (%, %) -> %
 from NonAssociativeRng
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
 
- const?: % -> Boolean
 from JetBundleFunctionCategory JB
- construct: List Record(k: IndexedExponents JB, c: R) -> %
 from IndexedProductCategory(R, IndexedExponents JB)
- constructOrdered: List Record(k: IndexedExponents JB, c: R) -> %
 from IndexedProductCategory(R, IndexedExponents JB)
- content: % -> R if R has GcdDomain
 from FiniteAbelianMonoidRing(R, IndexedExponents JB)
- content: (%, JB) -> % if R has GcdDomain
 from PolynomialCategory(R, IndexedExponents JB, JB)
- convert: % -> InputForm if R has ConvertibleTo InputForm and JB has ConvertibleTo InputForm
 from ConvertibleTo InputForm
- convert: % -> Pattern Float if R has ConvertibleTo Pattern Float and JB has ConvertibleTo Pattern Float
 from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if R has ConvertibleTo Pattern Integer and JB has ConvertibleTo Pattern Integer
 from ConvertibleTo Pattern Integer
- D: (%, JB) -> %
 from PartialDifferentialRing JB
- D: (%, JB, NonNegativeInteger) -> %
 from PartialDifferentialRing JB
- D: (%, List JB) -> %
 from PartialDifferentialRing JB
- D: (%, List JB, List NonNegativeInteger) -> %
 from PartialDifferentialRing JB
- D: (%, List Symbol) -> %
 - D: (%, List Symbol, List NonNegativeInteger) -> %
 - D: (%, Symbol) -> %
 - D: (%, Symbol, NonNegativeInteger) -> %
 
- degree: % -> IndexedExponents JB
 from AbelianMonoidRing(R, IndexedExponents JB)
- degree: (%, JB) -> NonNegativeInteger
 from MaybeSkewPolynomialCategory(R, IndexedExponents JB, JB)
- degree: (%, List JB) -> List NonNegativeInteger
 from MaybeSkewPolynomialCategory(R, IndexedExponents JB, JB)
- denominator: % -> %
 from JetBundleFunctionCategory JB
- differentiate: (%, JB) -> %
 from PartialDifferentialRing JB
- differentiate: (%, JB, NonNegativeInteger) -> %
 from PartialDifferentialRing JB
- differentiate: (%, List JB) -> %
 from PartialDifferentialRing JB
- differentiate: (%, List JB, List NonNegativeInteger) -> %
 from PartialDifferentialRing JB
- differentiate: (%, List Symbol) -> %
 - differentiate: (%, List Symbol, List NonNegativeInteger) -> %
 - differentiate: (%, Symbol) -> %
 - differentiate: (%, Symbol, NonNegativeInteger) -> %
 
- dimension: (List %, SparseEchelonMatrix(JB, %), NonNegativeInteger) -> NonNegativeInteger
 from JetBundleFunctionCategory JB
- discriminant: (%, JB) -> % if R has CommutativeRing
 from PolynomialCategory(R, IndexedExponents JB, JB)
- dSubst: (%, JB, %) -> %
 from JetBundleFunctionCategory JB
- eval: (%, %, %) -> %
 from InnerEvalable(%, %)
- eval: (%, Equation %) -> %
 from Evalable %
- eval: (%, JB, %) -> %
 from InnerEvalable(JB, %)
- eval: (%, JB, R) -> %
 from InnerEvalable(JB, R)
- eval: (%, List %, List %) -> %
 from InnerEvalable(%, %)
- eval: (%, List Equation %) -> %
 from Evalable %
- eval: (%, List JB, List %) -> %
 from InnerEvalable(JB, %)
- eval: (%, List JB, List R) -> %
 from InnerEvalable(JB, R)
- exquo: (%, %) -> Union(%, failed)
 from EntireRing
- exquo: (%, R) -> Union(%, failed) if R has EntireRing
 from FiniteAbelianMonoidRing(R, IndexedExponents JB)
- extractSymbol: SparseEchelonMatrix(JB, %) -> SparseEchelonMatrix(JB, %)
 from JetBundleFunctionCategory JB
- factor: % -> Factored % if R has PolynomialFactorizationExplicit
 
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
 
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
 
- fmecg: (%, IndexedExponents JB, R, %) -> %
 from FiniteAbelianMonoidRing(R, IndexedExponents JB)
- formalDiff2: (%, PositiveInteger, SparseEchelonMatrix(JB, %)) -> Record(DPhi: %, JVars: List JB)
 from JetBundleFunctionCategory JB
- formalDiff2: (List %, PositiveInteger, SparseEchelonMatrix(JB, %)) -> Record(DSys: List %, JVars: List List JB)
 from JetBundleFunctionCategory JB
- formalDiff: (%, List NonNegativeInteger) -> %
 from JetBundleFunctionCategory JB
- formalDiff: (%, PositiveInteger) -> %
 from JetBundleFunctionCategory JB
- formalDiff: (List %, PositiveInteger) -> List %
 from JetBundleFunctionCategory JB
- freeOf?: (%, JB) -> Boolean
 from JetBundleFunctionCategory JB
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
 
- getNotation: () -> Symbol
 from JetBundleFunctionCategory JB
- groebner: List % -> List % if R has GcdDomain
 groebner(lp)computes a Groebner basis for the ideal generated bylpwrta lexicographic ordering.
- ground?: % -> Boolean
 from FiniteAbelianMonoidRing(R, IndexedExponents JB)
- ground: % -> R
 from FiniteAbelianMonoidRing(R, IndexedExponents JB)
- hash: % -> SingleInteger if JB has Hashable and R has Hashable
 from Hashable
- isExpt: % -> Union(Record(var: JB, exponent: NonNegativeInteger), failed)
 from PolynomialCategory(R, IndexedExponents JB, JB)
- isPlus: % -> Union(List %, failed)
 from PolynomialCategory(R, IndexedExponents JB, JB)
- isTimes: % -> Union(List %, failed)
 from PolynomialCategory(R, IndexedExponents JB, JB)
- jacobiMatrix: (List %, List List JB) -> SparseEchelonMatrix(JB, %)
 from JetBundleFunctionCategory JB
- jacobiMatrix: List % -> SparseEchelonMatrix(JB, %)
 from JetBundleFunctionCategory JB
- jetVariables: % -> List JB
 from JetBundleFunctionCategory JB
- latex: % -> String
 from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
 from LeftOreRing
- leadingCoefficient: % -> R
 from IndexedProductCategory(R, IndexedExponents JB)
- leadingDer: % -> JB
 from JetBundleFunctionCategory JB
- leadingMonomial: % -> %
 from IndexedProductCategory(R, IndexedExponents JB)
- leadingSupport: % -> IndexedExponents JB
 from IndexedProductCategory(R, IndexedExponents JB)
- leadingTerm: % -> Record(k: IndexedExponents JB, c: R)
 from IndexedProductCategory(R, IndexedExponents JB)
- leftPower: (%, NonNegativeInteger) -> %
 from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
 from Magma
- leftRecip: % -> Union(%, failed)
 from MagmaWithUnit
- linearExtend: (IndexedExponents JB -> R, %) -> R if R has CommutativeRing
 from FreeModuleCategory(R, IndexedExponents JB)
- listOfTerms: % -> List Record(k: IndexedExponents JB, c: R)
 from IndexedDirectProductCategory(R, IndexedExponents JB)
- mainVariable: % -> Union(JB, failed)
 from MaybeSkewPolynomialCategory(R, IndexedExponents JB, JB)
- map: (R -> R, %) -> %
 from IndexedProductCategory(R, IndexedExponents JB)
- mapExponents: (IndexedExponents JB -> IndexedExponents JB, %) -> %
 from FiniteAbelianMonoidRing(R, IndexedExponents JB)
- minimumDegree: % -> IndexedExponents JB
 from FiniteAbelianMonoidRing(R, IndexedExponents JB)
- minimumDegree: (%, JB) -> NonNegativeInteger
 from PolynomialCategory(R, IndexedExponents JB, JB)
- minimumDegree: (%, List JB) -> List NonNegativeInteger
 from PolynomialCategory(R, IndexedExponents JB, JB)
- monicDivide: (%, %, JB) -> Record(quotient: %, remainder: %)
 from PolynomialCategory(R, IndexedExponents JB, JB)
- monomial?: % -> Boolean
 from IndexedProductCategory(R, IndexedExponents JB)
- monomial: (%, JB, NonNegativeInteger) -> %
 from MaybeSkewPolynomialCategory(R, IndexedExponents JB, JB)
- monomial: (%, List JB, List NonNegativeInteger) -> %
 from MaybeSkewPolynomialCategory(R, IndexedExponents JB, JB)
- monomial: (R, IndexedExponents JB) -> %
 from IndexedProductCategory(R, IndexedExponents JB)
- monomials: % -> List %
 from MaybeSkewPolynomialCategory(R, IndexedExponents JB, JB)
- multivariate: (SparseUnivariatePolynomial %, JB) -> %
 from PolynomialCategory(R, IndexedExponents JB, JB)
- multivariate: (SparseUnivariatePolynomial R, JB) -> %
 from PolynomialCategory(R, IndexedExponents JB, JB)
- numberOfMonomials: % -> NonNegativeInteger
 from IndexedDirectProductCategory(R, IndexedExponents JB)
- numDepVar: () -> PositiveInteger
 from JetBundleFunctionCategory JB
- numerator: % -> %
 from JetBundleFunctionCategory JB
- numIndVar: () -> PositiveInteger
 from JetBundleFunctionCategory JB
- one?: % -> Boolean
 from MagmaWithUnit
- opposite?: (%, %) -> Boolean
 from AbelianMonoid
- order: % -> NonNegativeInteger
 from JetBundleFunctionCategory JB
- orderDim: (List %, SparseEchelonMatrix(JB, %), NonNegativeInteger) -> NonNegativeInteger
 from JetBundleFunctionCategory JB
- P: (PositiveInteger, List NonNegativeInteger) -> %
 from JetBundleFunctionCategory JB
- P: (PositiveInteger, NonNegativeInteger) -> %
 from JetBundleFunctionCategory JB
- P: List NonNegativeInteger -> %
 from JetBundleFunctionCategory JB
- P: NonNegativeInteger -> %
 from JetBundleFunctionCategory JB
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if JB has PatternMatchable Float and R has PatternMatchable Float
 from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if JB has PatternMatchable Integer and R has PatternMatchable Integer
 from PatternMatchable Integer
- plenaryPower: (%, PositiveInteger) -> %
 from NonAssociativeAlgebra %
- pomopo!: (%, R, IndexedExponents JB, %) -> %
 from FiniteAbelianMonoidRing(R, IndexedExponents JB)
- prime?: % -> Boolean if R has PolynomialFactorizationExplicit
 
- primitiveMonomials: % -> List %
 from MaybeSkewPolynomialCategory(R, IndexedExponents JB, JB)
- primitivePart: % -> % if R has GcdDomain
 from PolynomialCategory(R, IndexedExponents JB, JB)
- primitivePart: (%, JB) -> % if R has GcdDomain
 from PolynomialCategory(R, IndexedExponents JB, JB)
- recip: % -> Union(%, failed)
 from MagmaWithUnit
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if R has LinearlyExplicitOver Integer
 - reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix R, vec: Vector R)
 from LinearlyExplicitOver R
- reducedSystem: Matrix % -> Matrix Integer if R has LinearlyExplicitOver Integer
 - reducedSystem: Matrix % -> Matrix R
 from LinearlyExplicitOver R
- reduceMod: (List %, List %) -> List %
 from JetBundleFunctionCategory JB
- reductum: % -> %
 from IndexedProductCategory(R, IndexedExponents JB)
- resultant: (%, %, JB) -> % if R has CommutativeRing
 from PolynomialCategory(R, IndexedExponents JB, JB)
- retract: % -> Fraction Integer if R has RetractableTo Fraction Integer
 from RetractableTo Fraction Integer
- retract: % -> Integer if R has RetractableTo Integer
 from RetractableTo Integer
- retract: % -> JB
 from RetractableTo JB
- retract: % -> R
 from RetractableTo R
- retractIfCan: % -> Union(Fraction Integer, failed) if R has RetractableTo Fraction Integer
 from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed) if R has RetractableTo Integer
 from RetractableTo Integer
- retractIfCan: % -> Union(JB, failed)
 from RetractableTo JB
- retractIfCan: % -> Union(R, failed)
 from RetractableTo R
- rightPower: (%, NonNegativeInteger) -> %
 from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
 from Magma
- rightRecip: % -> Union(%, failed)
 from MagmaWithUnit
- sample: %
 from AbelianMonoid
- setNotation: Symbol -> Void
 from JetBundleFunctionCategory JB
- simplify: (List %, SparseEchelonMatrix(JB, %)) -> Record(Sys: List %, JM: SparseEchelonMatrix(JB, %), Depend: Union(failed, List List NonNegativeInteger))
 from JetBundleFunctionCategory JB
- simpMod: (List %, List %) -> List %
 from JetBundleFunctionCategory JB
- simpMod: (List %, SparseEchelonMatrix(JB, %), List %) -> Record(Sys: List %, JM: SparseEchelonMatrix(JB, %), Depend: Union(failed, List List NonNegativeInteger))
 from JetBundleFunctionCategory JB
- simpOne: % -> %
 from JetBundleFunctionCategory JB
- smaller?: (%, %) -> Boolean if R has Comparable
 from Comparable
- solveFor: (%, JB) -> Union(%, failed)
 from JetBundleFunctionCategory JB
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if R has PolynomialFactorizationExplicit
 
- sortLD: List % -> List %
 from JetBundleFunctionCategory JB
- squareFree: % -> Factored % if R has GcdDomain
 from PolynomialCategory(R, IndexedExponents JB, JB)
- squareFreePart: % -> % if R has GcdDomain
 from PolynomialCategory(R, IndexedExponents JB, JB)
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
 
- subst: (%, JB, %) -> %
 from JetBundleFunctionCategory JB
- subtractIfCan: (%, %) -> Union(%, failed)
 
- support: % -> List IndexedExponents JB
 from FreeModuleCategory(R, IndexedExponents JB)
- symbol: List % -> SparseEchelonMatrix(JB, %)
 from JetBundleFunctionCategory JB
- totalDegree: % -> NonNegativeInteger
 from MaybeSkewPolynomialCategory(R, IndexedExponents JB, JB)
- totalDegree: (%, List JB) -> NonNegativeInteger
 from MaybeSkewPolynomialCategory(R, IndexedExponents JB, JB)
- totalDegreeSorted: (%, List JB) -> NonNegativeInteger
 from MaybeSkewPolynomialCategory(R, IndexedExponents JB, JB)
- U: () -> %
 from JetBundleFunctionCategory JB
- U: PositiveInteger -> %
 from JetBundleFunctionCategory JB
- unit?: % -> Boolean
 from EntireRing
- unitCanonical: % -> %
 from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
 from EntireRing
- univariate: % -> SparseUnivariatePolynomial R
 from PolynomialCategory(R, IndexedExponents JB, JB)
- univariate: (%, JB) -> SparseUnivariatePolynomial %
 from PolynomialCategory(R, IndexedExponents JB, JB)
- variables: % -> List JB
 from MaybeSkewPolynomialCategory(R, IndexedExponents JB, JB)
- X: () -> %
 from JetBundleFunctionCategory JB
- X: PositiveInteger -> %
 from JetBundleFunctionCategory JB
- zero?: % -> Boolean
 from AbelianMonoid
AbelianMonoidRing(R, IndexedExponents JB)
Algebra %
Algebra Fraction Integer if R has Algebra Fraction Integer
Algebra R if R has CommutativeRing
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer) if R has Algebra Fraction Integer
BiModule(R, R)
canonicalUnitNormal if R has canonicalUnitNormal
CharacteristicNonZero if R has CharacteristicNonZero
CharacteristicZero if R has CharacteristicZero
CoercibleFrom Fraction Integer if R has RetractableTo Fraction Integer
CoercibleFrom Integer if R has RetractableTo Integer
Comparable if R has Comparable
ConvertibleTo InputForm if R has ConvertibleTo InputForm and JB has ConvertibleTo InputForm
ConvertibleTo Pattern Float if R has ConvertibleTo Pattern Float and JB has ConvertibleTo Pattern Float
ConvertibleTo Pattern Integer if R has ConvertibleTo Pattern Integer and JB has ConvertibleTo Pattern Integer
Evalable %
FiniteAbelianMonoidRing(R, IndexedExponents JB)
FreeModuleCategory(R, IndexedExponents JB)
Hashable if JB has Hashable and R has Hashable
IndexedDirectProductCategory(R, IndexedExponents JB)
IndexedProductCategory(R, IndexedExponents JB)
InnerEvalable(%, %)
InnerEvalable(JB, %)
InnerEvalable(JB, R)
LeftModule Fraction Integer if R has Algebra Fraction Integer
LinearlyExplicitOver Integer if R has LinearlyExplicitOver Integer
MaybeSkewPolynomialCategory(R, IndexedExponents JB, JB)
Module %
Module Fraction Integer if R has Algebra Fraction Integer
Module R if R has CommutativeRing
NonAssociativeAlgebra Fraction Integer if R has Algebra Fraction Integer
NonAssociativeAlgebra R if R has CommutativeRing
PartialDifferentialRing Symbol
PatternMatchable Float if JB has PatternMatchable Float and R has PatternMatchable Float
PatternMatchable Integer if JB has PatternMatchable Integer and R has PatternMatchable Integer
PolynomialCategory(R, IndexedExponents JB, JB)
PolynomialFactorizationExplicit if R has PolynomialFactorizationExplicit
RetractableTo Fraction Integer if R has RetractableTo Fraction Integer
RetractableTo Integer if R has RetractableTo Integer
RightModule Fraction Integer if R has Algebra Fraction Integer
RightModule Integer if R has LinearlyExplicitOver Integer
UniqueFactorizationDomain if R has PolynomialFactorizationExplicit