RngΒΆ
catdef.spad line 1389 [edit on github]
The category of associative rings, not necessarily commutative, and not necessarily with a 1. This is a combination of an abelian group and a semigroup, with multiplication distributing over addition.
- 0: %
- from AbelianMonoid 
- *: (%, %) -> %
- from Magma 
- *: (Integer, %) -> %
- from AbelianGroup 
- *: (NonNegativeInteger, %) -> %
- from AbelianMonoid 
- *: (PositiveInteger, %) -> %
- from AbelianSemiGroup 
- +: (%, %) -> %
- from AbelianSemiGroup 
- -: % -> %
- from AbelianGroup 
- -: (%, %) -> %
- from AbelianGroup 
- ^: (%, PositiveInteger) -> %
- from Magma 
- annihilate?: (%, %) -> Boolean
- annihilate?(x,y)holds when the product of- xand- yis- 0.
- antiCommutator: (%, %) -> %
- associator: (%, %, %) -> %
- from NonAssociativeRng 
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- commutator: (%, %) -> %
- from NonAssociativeRng 
- latex: % -> String
- from SetCategory 
- leftPower: (%, PositiveInteger) -> %
- from Magma 
- opposite?: (%, %) -> Boolean
- from AbelianMonoid 
- rightPower: (%, PositiveInteger) -> %
- from Magma 
- sample: %
- from AbelianMonoid 
- subtractIfCan: (%, %) -> Union(%, failed)
- zero?: % -> Boolean
- from AbelianMonoid 
BiModule(%, %)