RngΒΆ
catdef.spad line 1388 [edit on github]
The category of associative rings, not necessarily commutative, and not necessarily with a 1. This is a combination of an abelian group and a semigroup, with multiplication distributing over addition.
- 0: %
from AbelianMonoid
- *: (%, %) -> %
from Magma
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
annihilate?(x,y)
holds when the product ofx
andy
is0
.
- antiCommutator: (%, %) -> %
- associator: (%, %, %) -> %
from NonAssociativeRng
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- commutator: (%, %) -> %
from NonAssociativeRng
- latex: % -> String
from SetCategory
- leftPower: (%, PositiveInteger) -> %
from Magma
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- rightPower: (%, PositiveInteger) -> %
from Magma
- sample: %
from AbelianMonoid
- subtractIfCan: (%, %) -> Union(%, failed)
- zero?: % -> Boolean
from AbelianMonoid
BiModule(%, %)