FullyLinearlyExplicitOver RΒΆ

catdef.spad line 661 [edit on github]

S is FullyLinearlyExplicitOver R means that S is a LinearlyExplicitOver R and, in addition, if R is a LinearlyExplicitOver Integer, then so is S

0: %

from AbelianMonoid

*: (%, Integer) -> % if R has LinearlyExplicitOver Integer

from RightModule Integer

*: (%, R) -> %

from RightModule R

*: (Integer, %) -> %

from AbelianGroup

*: (NonNegativeInteger, %) -> %

from AbelianMonoid

*: (PositiveInteger, %) -> %

from AbelianSemiGroup

+: (%, %) -> %

from AbelianSemiGroup

-: % -> %

from AbelianGroup

-: (%, %) -> %

from AbelianGroup

=: (%, %) -> Boolean

from BasicType

~=: (%, %) -> Boolean

from BasicType

coerce: % -> OutputForm

from CoercibleTo OutputForm

latex: % -> String

from SetCategory

opposite?: (%, %) -> Boolean

from AbelianMonoid

reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if R has LinearlyExplicitOver Integer

from LinearlyExplicitOver Integer

reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix R, vec: Vector R)

from LinearlyExplicitOver R

reducedSystem: Matrix % -> Matrix Integer if R has LinearlyExplicitOver Integer

from LinearlyExplicitOver Integer

reducedSystem: Matrix % -> Matrix R

from LinearlyExplicitOver R

sample: %

from AbelianMonoid

subtractIfCan: (%, %) -> Union(%, failed)

from CancellationAbelianMonoid

zero?: % -> Boolean

from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianSemiGroup

BasicType

CancellationAbelianMonoid

CoercibleTo OutputForm

LinearlyExplicitOver Integer if R has LinearlyExplicitOver Integer

LinearlyExplicitOver R

RightModule Integer if R has LinearlyExplicitOver Integer

RightModule R

SetCategory