JetBundleFunctionCategory JBΒΆ
jet.spad line 494 [edit on github]
JetBundleFunctionCategory defines the category of functions (local sections) over a jet bundle. The formal derivative is defined already here. It uses the Jacobi matrix of the functions. The columns of the matrices are enumerated by jet variables. Thus they are represented as a Record of the matrix and a list of the jet variables. Several simplification routines are implemented already here.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from LeftModule %
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- autoReduce: List % -> List %
autoReduce(sys)
tries to simplify a system by solving each equation for its leading term and substituting it into the other equations.
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- class: % -> NonNegativeInteger
class(f)
is defined as the highest class of the jet variables effectively occurring inf
.
- coerce: % -> %
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Integer -> %
from NonAssociativeRing
- coerce: JB -> %
coerce(jv)
coerces the jet variablejv
into a local section.
- commutator: (%, %) -> %
from NonAssociativeRng
- const?: % -> Boolean
const?(f)
checks whetherf
depends of jet variables.
- D: (%, List Symbol) -> %
- D: (%, List Symbol, List NonNegativeInteger) -> %
- D: (%, Symbol) -> %
- D: (%, Symbol, NonNegativeInteger) -> %
- denominator: % -> %
denominator(f)
yields the denominator off
.
- differentiate: (%, JB) -> %
differentiate(f, jv)
differentiates the functionf
wrt
the jet variablejv
.- differentiate: (%, List Symbol) -> %
- differentiate: (%, List Symbol, List NonNegativeInteger) -> %
- differentiate: (%, Symbol) -> %
- differentiate: (%, Symbol, NonNegativeInteger) -> %
- dimension: (List %, SparseEchelonMatrix(JB, %), NonNegativeInteger) -> NonNegativeInteger
dimension(sys, jm, q)
computes the dimension of the manifold described by the systemsys
with Jacobi matrixjm
in the jet bundle of orderq
.
- dSubst: (%, JB, %) -> %
dSubst(f, jv, exp)
is likesubst(f, jv, exp)
. But additionally for all derivatives ofjv
the corresponding substitutions are performed.
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- extractSymbol: SparseEchelonMatrix(JB, %) -> SparseEchelonMatrix(JB, %)
extractSymbol(jm)
extracts the highest order part of the Jacobi matrix.
- formalDiff2: (%, PositiveInteger, SparseEchelonMatrix(JB, %)) -> Record(DPhi: %, JVars: List JB)
formalDiff2(f, i, jm)
formally differentiates the functionf
with the Jacobi matrixjm
wrt
thei
-
th independent variable.JVars
is a list of the jet variables effectively in the resultDPhi
(might be too large).
- formalDiff2: (List %, PositiveInteger, SparseEchelonMatrix(JB, %)) -> Record(DSys: List %, JVars: List List JB)
formalDiff2(sys, i, jm)
is like the other ``formalDiff2`` but for systems.
- formalDiff: (%, List NonNegativeInteger) -> %
formalDiff(f, mu)
formally differentiatesf
as indicated by the multi-indexmu
.
- formalDiff: (%, PositiveInteger) -> %
formalDiff(f, i)
formally (totally) differentiatesf
wrt
thei
-
th independent variable.
- formalDiff: (List %, PositiveInteger) -> List %
formalDiff(sys, i)
formally differentiates a familysys
of functionswrt
thei
-
th independent variable.
- freeOf?: (%, JB) -> Boolean
freeOf?(fun, jv)
checks whetherfun
contains the jet variablejv
.
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
from GcdDomain
getNotation: () -> Symbol
- jacobiMatrix: (List %, List List JB) -> SparseEchelonMatrix(JB, %)
jacobiMatrix(sys, jvars)
constructs the Jacobi matrix of the familysys
of functions.jvars
contains for each function the effectively occurring jet variables. The columns of the matrix are ordered.
- jacobiMatrix: List % -> SparseEchelonMatrix(JB, %)
jacobiMatrix(sys)
constructs the Jacobi matrix of the familysys
of functions.
- jetVariables: % -> List JB
jetVariables(f)
yields all jet variables effectively occurring inf
in an ordered list.
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- leadingDer: % -> JB
leadingDer(fun)
yields the leading derivative offun
. Iffun
contains no derivatives1
is returned.
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
numDepVar: () -> PositiveInteger
- numerator: % -> %
numerator(f)
yields the numerator off
.
numIndVar: () -> PositiveInteger
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: % -> NonNegativeInteger
order(f)
gives highest order of the jet variables effectively occurring inf
.
- orderDim: (List %, SparseEchelonMatrix(JB, %), NonNegativeInteger) -> NonNegativeInteger
orderDim(sys, jm, q)
computes the dimension of the manifold described by the systemsys
with Jacobi matrixjm
in the jet bundle of orderq
over the jet bundle of orderq-1
.
P: (PositiveInteger, List NonNegativeInteger) -> %
P: (PositiveInteger, NonNegativeInteger) -> %
P: List NonNegativeInteger -> %
P: NonNegativeInteger -> %
- plenaryPower: (%, PositiveInteger) -> %
from NonAssociativeAlgebra %
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reduceMod: (List %, List %) -> List %
reduceMod(sys1, sys2)
reduces the systemsys1
modulo the systemsys2
.
- retract: % -> JB
from RetractableTo JB
- retractIfCan: % -> Union(JB, failed)
from RetractableTo JB
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- simplify: (List %, SparseEchelonMatrix(JB, %)) -> Record(Sys: List %, JM: SparseEchelonMatrix(JB, %), Depend: Union(failed, List List NonNegativeInteger))
simplify(sys, jm)
simplifies a system with given Jacobi matrix. The Jacobi matrix of the simplified system is returned, too.Depend
contains for each equation of the simplified system the numbers of the equations of the original system out of which it is build, if it is possible to obtain this information. If one can generate equations of lower order by purely algebraic operations, thensimplify
should do this.
- simpMod: (List %, List %) -> List %
simpMod(sys1, sys2)
simplifies the systemsys1
modulo the systemsys2
.
- simpMod: (List %, SparseEchelonMatrix(JB, %), List %) -> Record(Sys: List %, JM: SparseEchelonMatrix(JB, %), Depend: Union(failed, List List NonNegativeInteger))
simpMod(sys1, sys2)
simplifies the systemsys1
modulo the systemsys2
. Returns the same information assimplify
.
- simpOne: % -> %
simpOne(f)
removes unnecessary coefficients and exponents, denominators etc.
- solveFor: (%, JB) -> Union(%, failed)
solveFor(fun, jv)
tries to solvefun
for the jet variablejv
.
- sortLD: List % -> List %
sortLD(sys)
sorts the functions insys
according to their leading derivatives.
- subst: (%, JB, %) -> %
subst(f, jv, exp)
substitutesexp
for the jet variablejv
in the functionf
.
- subtractIfCan: (%, %) -> Union(%, failed)
- symbol: List % -> SparseEchelonMatrix(JB, %)
symbol(sys)
computes directly the symbol of the familysys
of functions.
U: () -> %
U: PositiveInteger -> %
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
X: () -> %
X: PositiveInteger -> %
- zero?: % -> Boolean
from AbelianMonoid
Algebra %
BiModule(%, %)
Module %