XPBWPolynomial(VarSet, R)ΒΆ
xlpoly.spad line 754 [edit on github]
VarSet: OrderedSet
This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. Author: Michel Petitot (petitot@lifl.fr
).
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, R) -> %
from RightModule R
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- *: (VarSet, %) -> %
from XFreeAlgebra(VarSet, R)
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associator: (%, %, %) -> %
from NonAssociativeRng
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- coef: (%, %) -> R
from XFreeAlgebra(VarSet, R)
- coef: (%, FreeMonoid VarSet) -> R
from XFreeAlgebra(VarSet, R)
- coefficient: (%, PoincareBirkhoffWittLyndonBasis VarSet) -> R
from FreeModuleCategory(R, PoincareBirkhoffWittLyndonBasis VarSet)
- coefficients: % -> List R
from FreeModuleCategory(R, PoincareBirkhoffWittLyndonBasis VarSet)
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: % -> XDistributedPolynomial(VarSet, R)
coerce(p)
returnsp
as a distributed polynomial.
- coerce: % -> XRecursivePolynomial(VarSet, R)
coerce(p)
returnsp
as a recursive polynomial.- coerce: FreeMonoid VarSet -> %
from CoercibleFrom FreeMonoid VarSet
- coerce: Integer -> %
from NonAssociativeRing
- coerce: LiePolynomial(VarSet, R) -> %
coerce(p)
returnsp
.- coerce: R -> %
from CoercibleFrom R
- coerce: VarSet -> %
from XFreeAlgebra(VarSet, R)
- commutator: (%, %) -> %
from NonAssociativeRng
- constant?: % -> Boolean
from XFreeAlgebra(VarSet, R)
- constant: % -> R
from XFreeAlgebra(VarSet, R)
- construct: List Record(k: PoincareBirkhoffWittLyndonBasis VarSet, c: R) -> %
from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis VarSet)
- constructOrdered: List Record(k: PoincareBirkhoffWittLyndonBasis VarSet, c: R) -> %
from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis VarSet)
- degree: % -> NonNegativeInteger
from XPolynomialsCat(VarSet, R)
- exp: (%, NonNegativeInteger) -> % if R has Module Fraction Integer
exp(p, n)
returns the exponential ofp
(truncated up to ordern
).
- latex: % -> String
from SetCategory
- leadingCoefficient: % -> R
from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis VarSet)
- leadingMonomial: % -> %
from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis VarSet)
- leadingSupport: % -> PoincareBirkhoffWittLyndonBasis VarSet
from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis VarSet)
- leadingTerm: % -> Record(k: PoincareBirkhoffWittLyndonBasis VarSet, c: R)
from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis VarSet)
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- LiePolyIfCan: % -> Union(LiePolynomial(VarSet, R), failed)
LiePolyIfCan(p)
returnp
ifp
is a Lie polynomial.
- linearExtend: (PoincareBirkhoffWittLyndonBasis VarSet -> R, %) -> R
from FreeModuleCategory(R, PoincareBirkhoffWittLyndonBasis VarSet)
- listOfTerms: % -> List Record(k: PoincareBirkhoffWittLyndonBasis VarSet, c: R)
from IndexedDirectProductCategory(R, PoincareBirkhoffWittLyndonBasis VarSet)
- log: (%, NonNegativeInteger) -> % if R has Module Fraction Integer
log(p, n)
returns the logarithm ofp
(truncated up to ordern
).
- lquo: (%, %) -> %
from XFreeAlgebra(VarSet, R)
- lquo: (%, FreeMonoid VarSet) -> %
from XFreeAlgebra(VarSet, R)
- lquo: (%, VarSet) -> %
from XFreeAlgebra(VarSet, R)
- map: (R -> R, %) -> %
from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis VarSet)
- maxdeg: % -> FreeMonoid VarSet
from XPolynomialsCat(VarSet, R)
- mindeg: % -> FreeMonoid VarSet
from XFreeAlgebra(VarSet, R)
- mindegTerm: % -> Record(k: FreeMonoid VarSet, c: R)
from XFreeAlgebra(VarSet, R)
- mirror: % -> %
from XFreeAlgebra(VarSet, R)
- monomial?: % -> Boolean
from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis VarSet)
- monomial: (R, FreeMonoid VarSet) -> %
from XFreeAlgebra(VarSet, R)
- monomial: (R, PoincareBirkhoffWittLyndonBasis VarSet) -> %
from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis VarSet)
- monomials: % -> List %
from FreeModuleCategory(R, PoincareBirkhoffWittLyndonBasis VarSet)
- numberOfMonomials: % -> NonNegativeInteger
from IndexedDirectProductCategory(R, PoincareBirkhoffWittLyndonBasis VarSet)
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- plenaryPower: (%, PositiveInteger) -> %
from NonAssociativeAlgebra R
- product: (%, %, NonNegativeInteger) -> %
product(a, b, n)
returnsa*b
(truncated up to ordern
).
- quasiRegular?: % -> Boolean
from XFreeAlgebra(VarSet, R)
- quasiRegular: % -> %
from XFreeAlgebra(VarSet, R)
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reductum: % -> %
from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis VarSet)
- retract: % -> FreeMonoid VarSet
from RetractableTo FreeMonoid VarSet
- retract: % -> R
from RetractableTo R
- retractIfCan: % -> Union(FreeMonoid VarSet, failed)
from RetractableTo FreeMonoid VarSet
- retractIfCan: % -> Union(R, failed)
from RetractableTo R
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- rquo: (%, %) -> %
from XFreeAlgebra(VarSet, R)
- rquo: (%, FreeMonoid VarSet) -> %
from XFreeAlgebra(VarSet, R)
- rquo: (%, VarSet) -> %
from XFreeAlgebra(VarSet, R)
- sample: %
from AbelianMonoid
- sh: (%, %) -> %
from XFreeAlgebra(VarSet, R)
- sh: (%, NonNegativeInteger) -> %
from XFreeAlgebra(VarSet, R)
- smaller?: (%, %) -> Boolean if R has Comparable
from Comparable
- subtractIfCan: (%, %) -> Union(%, failed)
- support: % -> List PoincareBirkhoffWittLyndonBasis VarSet
from FreeModuleCategory(R, PoincareBirkhoffWittLyndonBasis VarSet)
- trunc: (%, NonNegativeInteger) -> %
from XPolynomialsCat(VarSet, R)
- varList: % -> List VarSet
from XFreeAlgebra(VarSet, R)
- zero?: % -> Boolean
from AbelianMonoid
Algebra R
BiModule(%, %)
BiModule(R, R)
CoercibleFrom FreeMonoid VarSet
Comparable if R has Comparable
FreeModuleCategory(R, PoincareBirkhoffWittLyndonBasis VarSet)
IndexedDirectProductCategory(R, PoincareBirkhoffWittLyndonBasis VarSet)
IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis VarSet)
Module R
noZeroDivisors if R has noZeroDivisors
RetractableTo FreeMonoid VarSet
XAlgebra R
XFreeAlgebra(VarSet, R)
XPolynomialsCat(VarSet, R)