UnivariateSkewPolynomialCategory RΒΆ
ore.spad line 46 [edit on github]
R: Ring
This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by x a = \sigma(a) x + \delta a
. This category is an evolution of the types MonogenicLinearOperator, OppositeMonogenicLinearOperator, and NonCommutativeOperatorDivision developed by Jean Della Dora and Stephen M
. Watt.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Fraction Integer) -> % if R has Algebra Fraction Integer
from RightModule Fraction Integer
- *: (%, Integer) -> % if R has LinearlyExplicitOver Integer
from RightModule Integer
- *: (%, R) -> %
from RightModule R
- *: (Fraction Integer, %) -> % if R has Algebra Fraction Integer
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, R) -> % if R has Field
from AbelianMonoidRing(R, NonNegativeInteger)
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- apply: (%, R, R) -> R
apply(p, c, m)
returnsp(m)
where the action is given byx m = c sigma(m) + delta(m)
.
- associates?: (%, %) -> Boolean if R has EntireRing
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- binomThmExpt: (%, %, NonNegativeInteger) -> % if % has CommutativeRing
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if R has CharacteristicNonZero
- coefficient: (%, List SingletonAsOrderedSet, List NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- coefficient: (%, NonNegativeInteger) -> R
from FreeModuleCategory(R, NonNegativeInteger)
- coefficient: (%, SingletonAsOrderedSet, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- coefficients: % -> List R
from FreeModuleCategory(R, NonNegativeInteger)
- coerce: % -> % if R has IntegralDomain and % has VariablesCommuteWithCoefficients or R has CommutativeRing and % has VariablesCommuteWithCoefficients
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Fraction Integer -> % if R has RetractableTo Fraction Integer or R has Algebra Fraction Integer
- coerce: Integer -> %
from NonAssociativeRing
- coerce: R -> %
from Algebra R
- commutator: (%, %) -> %
from NonAssociativeRng
- construct: List Record(k: NonNegativeInteger, c: R) -> %
from IndexedProductCategory(R, NonNegativeInteger)
- constructOrdered: List Record(k: NonNegativeInteger, c: R) -> %
from IndexedProductCategory(R, NonNegativeInteger)
- degree: % -> NonNegativeInteger
from AbelianMonoidRing(R, NonNegativeInteger)
- degree: (%, List SingletonAsOrderedSet) -> List NonNegativeInteger
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- degree: (%, SingletonAsOrderedSet) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- exquo: (%, %) -> Union(%, failed) if R has EntireRing
from EntireRing
- exquo: (%, R) -> Union(%, failed) if R has EntireRing
exquo(l, a)
returns the exact quotient ofl
by a, returning"failed"
if this is not possible.
- fmecg: (%, NonNegativeInteger, R, %) -> %
- ground: % -> R
- latex: % -> String
from SetCategory
- leadingCoefficient: % -> R
from IndexedProductCategory(R, NonNegativeInteger)
- leadingMonomial: % -> %
from IndexedProductCategory(R, NonNegativeInteger)
- leadingTerm: % -> Record(k: NonNegativeInteger, c: R)
from IndexedProductCategory(R, NonNegativeInteger)
- leftDivide: (%, %) -> Record(quotient: %, remainder: %) if R has Field
leftDivide(a, b)
returns the pair[q, r]
such thata = b*q + r
and the degree ofr
is less than the degree ofb
. This process is calledleft division\ ``''
.
- leftExactQuotient: (%, %) -> Union(%, failed) if R has Field
leftExactQuotient(a, b)
computes the valueq
, if it exists, such thata = b*q
.
- leftExtendedGcd: (%, %) -> Record(coef1: %, coef2: %, generator: %) if R has Field
leftExtendedGcd(a, b)
returns[c, d, g]
such thatg = a * c + b * d = leftGcd(a, b)
.
- leftGcd: (%, %) -> % if R has Field
leftGcd(a, b)
computes the valueg
of highest degree such thata = g*aa
b = g*bb
for some valuesaa
andbb
. The valueg
is computed using left-division.
- leftLcm: (%, %) -> % if R has Field
leftLcm(a, b)
computes the valuem
of lowest degree such thatm = aa*a = bb*b
for some valuesaa
andbb
. The valuem
is computed using right-division.
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftQuotient: (%, %) -> % if R has Field
leftQuotient(a, b)
computes the pair[q, r]
such thata = b*q + r
and the degree ofr
is less than the degree ofb
. The valueq
is returned.
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- leftRemainder: (%, %) -> % if R has Field
leftRemainder(a, b)
computes the pair[q, r]
such thata = b*q + r
and the degree ofr
is less than the degree ofb
. The valuer
is returned.
- linearExtend: (NonNegativeInteger -> R, %) -> R if R has CommutativeRing
from FreeModuleCategory(R, NonNegativeInteger)
- listOfTerms: % -> List Record(k: NonNegativeInteger, c: R)
- mainVariable: % -> Union(SingletonAsOrderedSet, failed)
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- map: (R -> R, %) -> %
from IndexedProductCategory(R, NonNegativeInteger)
- mapExponents: (NonNegativeInteger -> NonNegativeInteger, %) -> %
- monicLeftDivide: (%, %) -> Record(quotient: %, remainder: %) if R has IntegralDomain
monicLeftDivide(a, b)
returns the pair[q, r]
such thata = b*q + r
and the degree ofr
is less than the degree ofb
.b
must be monic. This process is calledleft division\ ``''
.
- monicRightDivide: (%, %) -> Record(quotient: %, remainder: %) if R has IntegralDomain
monicRightDivide(a, b)
returns the pair[q, r]
such thata = q*b + r
and the degree ofr
is less than the degree ofb
.b
must be monic. This process is calledright division\ ``''
.
- monomial?: % -> Boolean
from IndexedProductCategory(R, NonNegativeInteger)
- monomial: (%, List SingletonAsOrderedSet, List NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- monomial: (%, SingletonAsOrderedSet, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- monomial: (R, NonNegativeInteger) -> %
from IndexedProductCategory(R, NonNegativeInteger)
- monomials: % -> List %
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- plenaryPower: (%, PositiveInteger) -> % if R has CommutativeRing or R has Algebra Fraction Integer
from NonAssociativeAlgebra R
- pomopo!: (%, R, NonNegativeInteger, %) -> %
- primitiveMonomials: % -> List %
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- primitivePart: % -> % if R has GcdDomain
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if R has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix R, vec: Vector R)
from LinearlyExplicitOver R
- reducedSystem: Matrix % -> Matrix Integer if R has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix R
from LinearlyExplicitOver R
- reductum: % -> %
from IndexedProductCategory(R, NonNegativeInteger)
- retract: % -> Fraction Integer if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer if R has RetractableTo Integer
from RetractableTo Integer
- retract: % -> R
from RetractableTo R
- retractIfCan: % -> Union(Fraction Integer, failed) if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed) if R has RetractableTo Integer
from RetractableTo Integer
- retractIfCan: % -> Union(R, failed)
from RetractableTo R
- right_ext_ext_GCD: (%, %) -> Record(generator: %, coef1: %, coef2: %, coefu: %, coefv: %) if R has Field
right_ext_ext_GCD(a, b)
returnsg, c, d, u, v
such thatg = c * a + d * b = rightGcd(a, b)
,u * a = - v * b = leftLcm(a, b)
and matrixmatrix([[c, d], [u, v]])
is invertible.
- rightDivide: (%, %) -> Record(quotient: %, remainder: %) if R has Field
rightDivide(a, b)
returns the pair[q, r]
such thata = q*b + r
and the degree ofr
is less than the degree ofb
. This process is calledright division\ ``''
.
- rightExactQuotient: (%, %) -> Union(%, failed) if R has Field
rightExactQuotient(a, b)
computes the valueq
, if it exists such thata = q*b
.
- rightExtendedGcd: (%, %) -> Record(coef1: %, coef2: %, generator: %) if R has Field
rightExtendedGcd(a, b)
returns[c, d, g]
such thatg = c * a + d * b = rightGcd(a, b)
.
- rightGcd: (%, %) -> % if R has Field
rightGcd(a, b)
computes the valueg
of highest degree such thata = aa*g
b = bb*g
for some valuesaa
andbb
. The valueg
is computed using right-division.
- rightLcm: (%, %) -> % if R has Field
rightLcm(a, b)
computes the valuem
of lowest degree such thatm = a*aa = b*bb
for some valuesaa
andbb
. The valuem
is computed using left-division.
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightQuotient: (%, %) -> % if R has Field
rightQuotient(a, b)
computes the pair[q, r]
such thata = q*b + r
and the degree ofr
is less than the degree ofb
. The valueq
is returned.
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- rightRemainder: (%, %) -> % if R has Field
rightRemainder(a, b)
computes the pair[q, r]
such thata = q*b + r
and the degree ofr
is less than the degree ofb
. The valuer
is returned.
- sample: %
from AbelianMonoid
- smaller?: (%, %) -> Boolean if R has Comparable
from Comparable
- subtractIfCan: (%, %) -> Union(%, failed)
- support: % -> List NonNegativeInteger
from FreeModuleCategory(R, NonNegativeInteger)
- totalDegree: % -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- totalDegree: (%, List SingletonAsOrderedSet) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- totalDegreeSorted: (%, List SingletonAsOrderedSet) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- unit?: % -> Boolean if R has EntireRing
from EntireRing
- unitCanonical: % -> % if R has EntireRing
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if R has EntireRing
from EntireRing
- variables: % -> List SingletonAsOrderedSet
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- zero?: % -> Boolean
from AbelianMonoid
AbelianMonoidRing(R, NonNegativeInteger)
Algebra % if R has IntegralDomain and % has VariablesCommuteWithCoefficients or R has CommutativeRing and % has VariablesCommuteWithCoefficients
Algebra Fraction Integer if R has Algebra Fraction Integer
Algebra R if R has CommutativeRing
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer) if R has Algebra Fraction Integer
BiModule(R, R)
canonicalUnitNormal if R has canonicalUnitNormal
CharacteristicNonZero if R has CharacteristicNonZero
CharacteristicZero if R has CharacteristicZero
CoercibleFrom Fraction Integer if R has RetractableTo Fraction Integer
CoercibleFrom Integer if R has RetractableTo Integer
CommutativeRing if R has CommutativeRing and % has VariablesCommuteWithCoefficients or R has IntegralDomain and % has VariablesCommuteWithCoefficients
CommutativeStar if R has IntegralDomain and % has VariablesCommuteWithCoefficients or R has CommutativeRing and % has VariablesCommuteWithCoefficients
Comparable if R has Comparable
EntireRing if R has EntireRing
FiniteAbelianMonoidRing(R, NonNegativeInteger)
FreeModuleCategory(R, NonNegativeInteger)
IndexedDirectProductCategory(R, NonNegativeInteger)
IndexedProductCategory(R, NonNegativeInteger)
IntegralDomain if R has IntegralDomain and % has VariablesCommuteWithCoefficients
LeftModule Fraction Integer if R has Algebra Fraction Integer
LinearlyExplicitOver Integer if R has LinearlyExplicitOver Integer
MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
Module % if R has IntegralDomain and % has VariablesCommuteWithCoefficients or R has CommutativeRing and % has VariablesCommuteWithCoefficients
Module Fraction Integer if R has Algebra Fraction Integer
Module R if R has CommutativeRing
NonAssociativeAlgebra % if R has IntegralDomain and % has VariablesCommuteWithCoefficients or R has CommutativeRing and % has VariablesCommuteWithCoefficients
NonAssociativeAlgebra Fraction Integer if R has Algebra Fraction Integer
NonAssociativeAlgebra R if R has CommutativeRing
noZeroDivisors if R has EntireRing
RetractableTo Fraction Integer if R has RetractableTo Fraction Integer
RetractableTo Integer if R has RetractableTo Integer
RightModule Fraction Integer if R has Algebra Fraction Integer
RightModule Integer if R has LinearlyExplicitOver Integer
TwoSidedRecip if R has IntegralDomain and % has VariablesCommuteWithCoefficients or R has CommutativeRing and % has VariablesCommuteWithCoefficients