UnivariatePolynomial(x, R)ΒΆ
poly.spad line 930 [edit on github]
This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.
- 0: %
- from AbelianMonoid 
- 1: %
- from MagmaWithUnit 
- *: (%, %) -> %
- from Magma 
- *: (%, Fraction Integer) -> % if R has Algebra Fraction Integer
- from RightModule Fraction Integer 
- *: (%, Integer) -> % if R has LinearlyExplicitOver Integer
- from RightModule Integer 
- *: (%, R) -> %
- from RightModule R 
- *: (Fraction Integer, %) -> % if R has Algebra Fraction Integer
- from LeftModule Fraction Integer 
- *: (Integer, %) -> %
- from AbelianGroup 
- *: (NonNegativeInteger, %) -> %
- from AbelianMonoid 
- *: (PositiveInteger, %) -> %
- from AbelianSemiGroup 
- *: (R, %) -> %
- from LeftModule R 
- +: (%, %) -> %
- from AbelianSemiGroup 
- -: % -> %
- from AbelianGroup 
- -: (%, %) -> %
- from AbelianGroup 
- /: (%, R) -> % if R has Field
- from AbelianMonoidRing(R, NonNegativeInteger) 
- ^: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- ^: (%, PositiveInteger) -> %
- from Magma 
- annihilate?: (%, %) -> Boolean
- from Rng 
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean if R has EntireRing
- from EntireRing 
- associator: (%, %, %) -> %
- from NonAssociativeRng 
- binomThmExpt: (%, %, NonNegativeInteger) -> % if % has CommutativeRing
- characteristic: () -> NonNegativeInteger
- from NonAssociativeRing 
- charthRoot: % -> Union(%, failed) if R has CharacteristicNonZero or % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- coefficient: (%, List SingletonAsOrderedSet, List NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- coefficient: (%, NonNegativeInteger) -> R
- from FreeModuleCategory(R, NonNegativeInteger) 
- coefficient: (%, SingletonAsOrderedSet, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- coefficients: % -> List R
- from FreeModuleCategory(R, NonNegativeInteger) 
- coerce: % -> % if R has CommutativeRing
- from Algebra % 
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- coerce: Fraction Integer -> % if R has RetractableTo Fraction Integer or R has Algebra Fraction Integer
- coerce: Integer -> %
- from NonAssociativeRing 
- coerce: R -> %
- from Algebra R 
- coerce: SingletonAsOrderedSet -> %
- coerce: Variable x -> %
- coerce(x)converts the variable- xto a univariate polynomial.
- commutator: (%, %) -> %
- from NonAssociativeRng 
- composite: (%, %) -> Union(%, failed) if R has IntegralDomain
- from UnivariatePolynomialCategory R 
- composite: (Fraction %, %) -> Union(Fraction %, failed) if R has IntegralDomain
- from UnivariatePolynomialCategory R 
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- construct: List Record(k: NonNegativeInteger, c: R) -> %
- from IndexedProductCategory(R, NonNegativeInteger) 
- constructOrdered: List Record(k: NonNegativeInteger, c: R) -> %
- from IndexedProductCategory(R, NonNegativeInteger) 
- content: % -> R if R has GcdDomain
- content: (%, SingletonAsOrderedSet) -> % if R has GcdDomain
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- convert: % -> InputForm if R has ConvertibleTo InputForm and SingletonAsOrderedSet has ConvertibleTo InputForm
- from ConvertibleTo InputForm 
- convert: % -> Pattern Float if R has ConvertibleTo Pattern Float and SingletonAsOrderedSet has ConvertibleTo Pattern Float
- from ConvertibleTo Pattern Float 
- convert: % -> Pattern Integer if R has ConvertibleTo Pattern Integer and SingletonAsOrderedSet has ConvertibleTo Pattern Integer
- from ConvertibleTo Pattern Integer 
- D: % -> %
- from DifferentialRing 
- D: (%, List SingletonAsOrderedSet) -> %
- D: (%, List SingletonAsOrderedSet, List NonNegativeInteger) -> %
- D: (%, List Symbol) -> % if R has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> %
- from DifferentialRing 
- D: (%, R -> R) -> %
- from DifferentialExtension R 
- D: (%, R -> R, NonNegativeInteger) -> %
- from DifferentialExtension R 
- D: (%, SingletonAsOrderedSet) -> %
- D: (%, SingletonAsOrderedSet, NonNegativeInteger) -> %
- D: (%, Symbol) -> % if R has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol
- degree: % -> NonNegativeInteger
- from AbelianMonoidRing(R, NonNegativeInteger) 
- degree: (%, List SingletonAsOrderedSet) -> List NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- degree: (%, SingletonAsOrderedSet) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- differentiate: % -> %
- from DifferentialRing 
- differentiate: (%, List SingletonAsOrderedSet) -> %
- differentiate: (%, List SingletonAsOrderedSet, List NonNegativeInteger) -> %
- differentiate: (%, List Symbol) -> % if R has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> %
- from DifferentialRing 
- differentiate: (%, R -> R) -> %
- from DifferentialExtension R 
- differentiate: (%, R -> R, %) -> %
- from UnivariatePolynomialCategory R 
- differentiate: (%, R -> R, NonNegativeInteger) -> %
- from DifferentialExtension R 
- differentiate: (%, SingletonAsOrderedSet) -> %
- differentiate: (%, SingletonAsOrderedSet, NonNegativeInteger) -> %
- differentiate: (%, Symbol) -> % if R has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol
- discriminant: % -> R if R has CommutativeRing
- from UnivariatePolynomialCategory R 
- discriminant: (%, SingletonAsOrderedSet) -> % if R has CommutativeRing
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- divide: (%, %) -> Record(quotient: %, remainder: %) if R has Field
- from EuclideanDomain 
- divideExponents: (%, NonNegativeInteger) -> Union(%, failed)
- from UnivariatePolynomialCategory R 
- elt: (%, %) -> %
- from Eltable(%, %) 
- elt: (%, Fraction %) -> Fraction % if R has IntegralDomain
- elt: (%, R) -> R
- from Eltable(R, R) 
- elt: (Fraction %, Fraction %) -> Fraction % if R has IntegralDomain
- from UnivariatePolynomialCategory R 
- elt: (Fraction %, R) -> R if R has Field
- from UnivariatePolynomialCategory R 
- euclideanSize: % -> NonNegativeInteger if R has Field
- from EuclideanDomain 
- eval: (%, %, %) -> %
- from InnerEvalable(%, %) 
- eval: (%, Equation %) -> %
- from Evalable % 
- eval: (%, List %, List %) -> %
- from InnerEvalable(%, %) 
- eval: (%, List Equation %) -> %
- from Evalable % 
- eval: (%, List SingletonAsOrderedSet, List %) -> %
- from InnerEvalable(SingletonAsOrderedSet, %) 
- eval: (%, List SingletonAsOrderedSet, List R) -> %
- from InnerEvalable(SingletonAsOrderedSet, R) 
- eval: (%, SingletonAsOrderedSet, %) -> %
- from InnerEvalable(SingletonAsOrderedSet, %) 
- eval: (%, SingletonAsOrderedSet, R) -> %
- from InnerEvalable(SingletonAsOrderedSet, R) 
- expressIdealMember: (List %, %) -> Union(List %, failed) if R has Field
- from PrincipalIdealDomain 
- exquo: (%, %) -> Union(%, failed) if R has EntireRing
- from EntireRing 
- exquo: (%, R) -> Union(%, failed) if R has EntireRing
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %) if R has Field
- from EuclideanDomain 
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed) if R has Field
- from EuclideanDomain 
- factor: % -> Factored % if R has PolynomialFactorizationExplicit
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- fmecg: (%, NonNegativeInteger, R, %) -> %
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if R has GcdDomain
- from GcdDomain 
- ground: % -> R
- hash: % -> SingleInteger if R has Hashable
- from Hashable 
- hashUpdate!: (HashState, %) -> HashState if R has Hashable
- from Hashable 
- init: % if R has StepThrough
- from StepThrough 
- integrate: % -> % if R has Algebra Fraction Integer
- from UnivariatePolynomialCategory R 
- isExpt: % -> Union(Record(var: SingletonAsOrderedSet, exponent: NonNegativeInteger), failed)
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- isPlus: % -> Union(List %, failed)
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- isTimes: % -> Union(List %, failed)
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- karatsubaDivide: (%, NonNegativeInteger) -> Record(quotient: %, remainder: %)
- from UnivariatePolynomialCategory R 
- latex: % -> String
- from SetCategory 
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if R has GcdDomain
- from LeftOreRing 
- leadingCoefficient: % -> R
- from IndexedProductCategory(R, NonNegativeInteger) 
- leadingMonomial: % -> %
- from IndexedProductCategory(R, NonNegativeInteger) 
- leadingTerm: % -> Record(k: NonNegativeInteger, c: R)
- from IndexedProductCategory(R, NonNegativeInteger) 
- leftPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- leftPower: (%, PositiveInteger) -> %
- from Magma 
- leftRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- linearExtend: (NonNegativeInteger -> R, %) -> R if R has CommutativeRing
- from FreeModuleCategory(R, NonNegativeInteger) 
- listOfTerms: % -> List Record(k: NonNegativeInteger, c: R)
- mainVariable: % -> Union(SingletonAsOrderedSet, failed)
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- makeSUP: % -> SparseUnivariatePolynomial R
- from UnivariatePolynomialCategory R 
- map: (R -> R, %) -> %
- from IndexedProductCategory(R, NonNegativeInteger) 
- mapExponents: (NonNegativeInteger -> NonNegativeInteger, %) -> %
- minimumDegree: % -> NonNegativeInteger
- minimumDegree: (%, List SingletonAsOrderedSet) -> List NonNegativeInteger
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- minimumDegree: (%, SingletonAsOrderedSet) -> NonNegativeInteger
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- monicDivide: (%, %) -> Record(quotient: %, remainder: %)
- from UnivariatePolynomialCategory R 
- monicDivide: (%, %, SingletonAsOrderedSet) -> Record(quotient: %, remainder: %)
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- monomial?: % -> Boolean
- from IndexedProductCategory(R, NonNegativeInteger) 
- monomial: (%, List SingletonAsOrderedSet, List NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- monomial: (%, SingletonAsOrderedSet, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- monomial: (R, NonNegativeInteger) -> %
- from IndexedProductCategory(R, NonNegativeInteger) 
- monomials: % -> List %
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- multiEuclidean: (List %, %) -> Union(List %, failed) if R has Field
- from EuclideanDomain 
- multiplyExponents: (%, NonNegativeInteger) -> %
- from UnivariatePolynomialCategory R 
- multivariate: (SparseUnivariatePolynomial %, SingletonAsOrderedSet) -> %
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- multivariate: (SparseUnivariatePolynomial R, SingletonAsOrderedSet) -> %
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- nextItem: % -> Union(%, failed) if R has StepThrough
- from StepThrough 
- one?: % -> Boolean
- from MagmaWithUnit 
- opposite?: (%, %) -> Boolean
- from AbelianMonoid 
- order: (%, %) -> NonNegativeInteger if R has IntegralDomain
- from UnivariatePolynomialCategory R 
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if SingletonAsOrderedSet has PatternMatchable Float and R has PatternMatchable Float
- from PatternMatchable Float 
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if SingletonAsOrderedSet has PatternMatchable Integer and R has PatternMatchable Integer
- from PatternMatchable Integer 
- plenaryPower: (%, PositiveInteger) -> % if R has CommutativeRing or R has Algebra Fraction Integer
- from NonAssociativeAlgebra % 
- pomopo!: (%, R, NonNegativeInteger, %) -> %
- prime?: % -> Boolean if R has PolynomialFactorizationExplicit
- primitiveMonomials: % -> List %
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- primitivePart: % -> % if R has GcdDomain
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- primitivePart: (%, SingletonAsOrderedSet) -> % if R has GcdDomain
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- principalIdeal: List % -> Record(coef: List %, generator: %) if R has Field
- from PrincipalIdealDomain 
- pseudoDivide: (%, %) -> Record(coef: R, quotient: %, remainder: %) if R has IntegralDomain
- from UnivariatePolynomialCategory R 
- pseudoQuotient: (%, %) -> % if R has IntegralDomain
- from UnivariatePolynomialCategory R 
- pseudoRemainder: (%, %) -> %
- from UnivariatePolynomialCategory R 
- quo: (%, %) -> % if R has Field
- from EuclideanDomain 
- recip: % -> Union(%, failed)
- from MagmaWithUnit 
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if R has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix R, vec: Vector R)
- from LinearlyExplicitOver R 
- reducedSystem: Matrix % -> Matrix Integer if R has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix R
- from LinearlyExplicitOver R 
- reductum: % -> %
- from IndexedProductCategory(R, NonNegativeInteger) 
- rem: (%, %) -> % if R has Field
- from EuclideanDomain 
- resultant: (%, %) -> R if R has CommutativeRing
- from UnivariatePolynomialCategory R 
- resultant: (%, %, SingletonAsOrderedSet) -> % if R has CommutativeRing
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- retract: % -> Fraction Integer if R has RetractableTo Fraction Integer
- from RetractableTo Fraction Integer 
- retract: % -> Integer if R has RetractableTo Integer
- from RetractableTo Integer 
- retract: % -> R
- from RetractableTo R 
- retract: % -> SingletonAsOrderedSet
- retractIfCan: % -> Union(Fraction Integer, failed) if R has RetractableTo Fraction Integer
- from RetractableTo Fraction Integer 
- retractIfCan: % -> Union(Integer, failed) if R has RetractableTo Integer
- from RetractableTo Integer 
- retractIfCan: % -> Union(R, failed)
- from RetractableTo R 
- retractIfCan: % -> Union(SingletonAsOrderedSet, failed)
- rightPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- rightPower: (%, PositiveInteger) -> %
- from Magma 
- rightRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- sample: %
- from AbelianMonoid 
- separate: (%, %) -> Record(primePart: %, commonPart: %) if R has GcdDomain
- from UnivariatePolynomialCategory R 
- shiftLeft: (%, NonNegativeInteger) -> %
- from UnivariatePolynomialCategory R 
- shiftRight: (%, NonNegativeInteger) -> %
- from UnivariatePolynomialCategory R 
- sizeLess?: (%, %) -> Boolean if R has Field
- from EuclideanDomain 
- smaller?: (%, %) -> Boolean if R has Comparable
- from Comparable 
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if R has PolynomialFactorizationExplicit
- squareFree: % -> Factored % if R has GcdDomain
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- squareFreePart: % -> % if R has GcdDomain
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- subResultantGcd: (%, %) -> % if R has IntegralDomain
- from UnivariatePolynomialCategory R 
- subtractIfCan: (%, %) -> Union(%, failed)
- support: % -> List NonNegativeInteger
- from FreeModuleCategory(R, NonNegativeInteger) 
- totalDegree: % -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- totalDegree: (%, List SingletonAsOrderedSet) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- totalDegreeSorted: (%, List SingletonAsOrderedSet) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- unit?: % -> Boolean if R has EntireRing
- from EntireRing 
- unitCanonical: % -> % if R has EntireRing
- from EntireRing 
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if R has EntireRing
- from EntireRing 
- univariate: % -> SparseUnivariatePolynomial R
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- univariate: (%, SingletonAsOrderedSet) -> SparseUnivariatePolynomial %
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- unmakeSUP: SparseUnivariatePolynomial R -> %
- from UnivariatePolynomialCategory R 
- unvectorise: Vector R -> %
- from UnivariatePolynomialCategory R 
- variables: % -> List SingletonAsOrderedSet
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet) 
- vectorise: (%, NonNegativeInteger) -> Vector R
- from UnivariatePolynomialCategory R 
- zero?: % -> Boolean
- from AbelianMonoid 
AbelianMonoidRing(R, NonNegativeInteger)
additiveValuation if R has Field
Algebra % if R has CommutativeRing
Algebra Fraction Integer if R has Algebra Fraction Integer
Algebra R if R has CommutativeRing
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer) if R has Algebra Fraction Integer
BiModule(R, R)
canonicalUnitNormal if R has canonicalUnitNormal
CharacteristicNonZero if R has CharacteristicNonZero
CharacteristicZero if R has CharacteristicZero
CoercibleFrom Fraction Integer if R has RetractableTo Fraction Integer
CoercibleFrom Integer if R has RetractableTo Integer
CoercibleFrom SingletonAsOrderedSet
CommutativeRing if R has CommutativeRing
CommutativeStar if R has CommutativeRing
Comparable if R has Comparable
ConvertibleTo InputForm if R has ConvertibleTo InputForm and SingletonAsOrderedSet has ConvertibleTo InputForm
ConvertibleTo Pattern Float if R has ConvertibleTo Pattern Float and SingletonAsOrderedSet has ConvertibleTo Pattern Float
ConvertibleTo Pattern Integer if R has ConvertibleTo Pattern Integer and SingletonAsOrderedSet has ConvertibleTo Pattern Integer
Eltable(%, %)
Eltable(Fraction %, Fraction %) if R has IntegralDomain
Eltable(R, R)
EntireRing if R has EntireRing
EuclideanDomain if R has Field
Evalable %
FiniteAbelianMonoidRing(R, NonNegativeInteger)
FreeModuleCategory(R, NonNegativeInteger)
IndexedDirectProductCategory(R, NonNegativeInteger)
IndexedProductCategory(R, NonNegativeInteger)
InnerEvalable(%, %)
InnerEvalable(SingletonAsOrderedSet, %)
InnerEvalable(SingletonAsOrderedSet, R)
IntegralDomain if R has IntegralDomain
LeftModule Fraction Integer if R has Algebra Fraction Integer
LeftOreRing if R has GcdDomain
LinearlyExplicitOver Integer if R has LinearlyExplicitOver Integer
MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
Module % if R has CommutativeRing
Module Fraction Integer if R has Algebra Fraction Integer
Module R if R has CommutativeRing
NonAssociativeAlgebra % if R has CommutativeRing
NonAssociativeAlgebra Fraction Integer if R has Algebra Fraction Integer
NonAssociativeAlgebra R if R has CommutativeRing
noZeroDivisors if R has EntireRing
PartialDifferentialRing SingletonAsOrderedSet
PartialDifferentialRing Symbol if R has PartialDifferentialRing Symbol
PatternMatchable Float if SingletonAsOrderedSet has PatternMatchable Float and R has PatternMatchable Float
PatternMatchable Integer if SingletonAsOrderedSet has PatternMatchable Integer and R has PatternMatchable Integer
PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
PolynomialFactorizationExplicit if R has PolynomialFactorizationExplicit
PrincipalIdealDomain if R has Field
RetractableTo Fraction Integer if R has RetractableTo Fraction Integer
RetractableTo Integer if R has RetractableTo Integer
RetractableTo SingletonAsOrderedSet
RightModule Fraction Integer if R has Algebra Fraction Integer
RightModule Integer if R has LinearlyExplicitOver Integer
StepThrough if R has StepThrough
TwoSidedRecip if R has CommutativeRing
UniqueFactorizationDomain if R has PolynomialFactorizationExplicit