SquareMatrix(ndim, R)ΒΆ
matrix.spad line 313 [edit on github]
ndim: NonNegativeInteger
R: Join(SemiRng, AbelianMonoid)
SquareMatrix is a matrix domain of square matrices, where the number of rows (= number of columns) is a parameter of the type.
- 0: %
from AbelianMonoid
- 1: % if R has SemiRing
from MagmaWithUnit
- #: % -> NonNegativeInteger
from Aggregate
- *: (%, %) -> %
from LeftModule %
- *: (%, DirectProduct(ndim, R)) -> DirectProduct(ndim, R)
from SquareMatrixCategory(ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- *: (%, Integer) -> % if R has LinearlyExplicitOver Integer and R has Ring
from RightModule Integer
- *: (%, R) -> %
from RightModule R
- *: (DirectProduct(ndim, R), %) -> DirectProduct(ndim, R)
from SquareMatrixCategory(ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- *: (Integer, %) -> % if % has AbelianGroup or R has AbelianGroup
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> % if % has AbelianGroup or R has AbelianGroup
from AbelianGroup
- -: (%, %) -> % if % has AbelianGroup or R has AbelianGroup
from AbelianGroup
- /: (%, R) -> % if R has Field
from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- ^: (%, Integer) -> % if R has Field
from SquareMatrixCategory(ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- ^: (%, NonNegativeInteger) -> % if R has SemiRing
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean if R has Ring
from Rng
- antiCommutator: (%, %) -> %
- antisymmetric?: % -> Boolean
from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- any?: (R -> Boolean, %) -> Boolean
from HomogeneousAggregate R
- associator: (%, %, %) -> % if R has Ring
from NonAssociativeRng
- characteristic: () -> NonNegativeInteger if R has Ring
from NonAssociativeRing
- coerce: % -> Matrix R
coerce(m)
converts a matrix of type SquareMatrix to a matrix of type Matrix.- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Fraction Integer -> % if R has RetractableTo Fraction Integer
from CoercibleFrom Fraction Integer
- coerce: Integer -> % if R has Ring or R has RetractableTo Integer
from CoercibleFrom Integer
- coerce: R -> %
from CoercibleFrom R
- column: (%, Integer) -> DirectProduct(ndim, R)
from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- columnSpace: % -> List DirectProduct(ndim, R) if R has EuclideanDomain
from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- commutator: (%, %) -> % if R has Ring
from NonAssociativeRng
- convert: % -> InputForm if R has ConvertibleTo InputForm
from ConvertibleTo InputForm
- count: (R -> Boolean, %) -> NonNegativeInteger
from HomogeneousAggregate R
- count: (R, %) -> NonNegativeInteger
from HomogeneousAggregate R
- D: % -> % if R has DifferentialRing and R has Ring
from DifferentialRing
- D: (%, List Symbol) -> % if R has PartialDifferentialRing Symbol and R has Ring
- D: (%, List Symbol, List NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol and R has Ring
- D: (%, NonNegativeInteger) -> % if R has DifferentialRing and R has Ring
from DifferentialRing
- D: (%, R -> R) -> % if R has Ring
from DifferentialExtension R
- D: (%, R -> R, NonNegativeInteger) -> % if R has Ring
from DifferentialExtension R
- D: (%, Symbol) -> % if R has PartialDifferentialRing Symbol and R has Ring
- D: (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol and R has Ring
- determinant: % -> R if R has CommutativeRing
from SquareMatrixCategory(ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- diagonal?: % -> Boolean
from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- diagonal: % -> DirectProduct(ndim, R)
from SquareMatrixCategory(ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- diagonalMatrix: List R -> %
from SquareMatrixCategory(ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- diagonalProduct: % -> R
from SquareMatrixCategory(ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- differentiate: % -> % if R has DifferentialRing and R has Ring
from DifferentialRing
- differentiate: (%, List Symbol) -> % if R has PartialDifferentialRing Symbol and R has Ring
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol and R has Ring
- differentiate: (%, NonNegativeInteger) -> % if R has DifferentialRing and R has Ring
from DifferentialRing
- differentiate: (%, R -> R) -> % if R has Ring
from DifferentialExtension R
- differentiate: (%, R -> R, NonNegativeInteger) -> % if R has Ring
from DifferentialExtension R
- differentiate: (%, Symbol) -> % if R has PartialDifferentialRing Symbol and R has Ring
- differentiate: (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol and R has Ring
- elt: (%, Integer, Integer) -> R
from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- elt: (%, Integer, Integer, R) -> R
from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- eval: (%, Equation R) -> % if R has Evalable R
from Evalable R
- eval: (%, List Equation R) -> % if R has Evalable R
from Evalable R
- eval: (%, List R, List R) -> % if R has Evalable R
from InnerEvalable(R, R)
- eval: (%, R, R) -> % if R has Evalable R
from InnerEvalable(R, R)
- every?: (R -> Boolean, %) -> Boolean
from HomogeneousAggregate R
- exquo: (%, R) -> Union(%, failed) if R has IntegralDomain
from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- hash: % -> SingleInteger if R has Finite
from Hashable
- hashUpdate!: (HashState, %) -> HashState if R has Finite
from Hashable
- index: PositiveInteger -> % if R has Finite
from Finite
- inverse: % -> Union(%, failed) if R has Field
from SquareMatrixCategory(ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- latex: % -> String
from SetCategory
- leftPower: (%, NonNegativeInteger) -> % if R has SemiRing
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed) if R has SemiRing
from MagmaWithUnit
- less?: (%, NonNegativeInteger) -> Boolean
from Aggregate
- listOfLists: % -> List List R
from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- lookup: % -> PositiveInteger if R has Finite
from Finite
- map: ((R, R) -> R, %, %) -> %
from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- map: (R -> R, %) -> %
from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- matrix: List List R -> %
from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- max: % -> R if R has OrderedSet
from HomogeneousAggregate R
- max: ((R, R) -> Boolean, %) -> R
from HomogeneousAggregate R
- maxColIndex: % -> Integer
from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- maxRowIndex: % -> Integer
from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- member?: (R, %) -> Boolean
from HomogeneousAggregate R
- members: % -> List R
from HomogeneousAggregate R
- min: % -> R if R has OrderedSet
from HomogeneousAggregate R
- minColIndex: % -> Integer
from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- minordet: % -> R if R has CommutativeRing
from SquareMatrixCategory(ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- minRowIndex: % -> Integer
from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- more?: (%, NonNegativeInteger) -> Boolean
from Aggregate
- ncols: % -> NonNegativeInteger
from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- nrows: % -> NonNegativeInteger
from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- nullity: % -> NonNegativeInteger if R has IntegralDomain
from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- nullSpace: % -> List DirectProduct(ndim, R) if R has IntegralDomain
from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- one?: % -> Boolean if R has SemiRing
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- parts: % -> List R
from HomogeneousAggregate R
- Pfaffian: % -> R if R has CommutativeRing
from SquareMatrixCategory(ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- plenaryPower: (%, PositiveInteger) -> % if R has CommutativeRing
from NonAssociativeAlgebra R
- qelt: (%, Integer, Integer) -> R
from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- rank: % -> NonNegativeInteger if R has IntegralDomain
from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- recip: % -> Union(%, failed) if R has SemiRing
from MagmaWithUnit
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if R has LinearlyExplicitOver Integer and R has Ring
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix R, vec: Vector R) if R has Ring
from LinearlyExplicitOver R
- reducedSystem: Matrix % -> Matrix Integer if R has LinearlyExplicitOver Integer and R has Ring
- reducedSystem: Matrix % -> Matrix R if R has Ring
from LinearlyExplicitOver R
- retract: % -> Fraction Integer if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer if R has RetractableTo Integer
from RetractableTo Integer
- retract: % -> R
from RetractableTo R
- retractIfCan: % -> Union(Fraction Integer, failed) if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed) if R has RetractableTo Integer
from RetractableTo Integer
- retractIfCan: % -> Union(R, failed)
from RetractableTo R
- rightPower: (%, NonNegativeInteger) -> % if R has SemiRing
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed) if R has SemiRing
from MagmaWithUnit
- row: (%, Integer) -> DirectProduct(ndim, R)
from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- rowEchelon: % -> % if R has EuclideanDomain
from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- sample: %
from AbelianMonoid
- scalarMatrix: R -> %
from SquareMatrixCategory(ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- size?: (%, NonNegativeInteger) -> Boolean
from Aggregate
- size: () -> NonNegativeInteger if R has Finite
from Finite
- smaller?: (%, %) -> Boolean if R has Finite
from Comparable
- square?: % -> Boolean
from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- squareMatrix: Matrix R -> %
squareMatrix(m)
converts a matrix of type Matrix to a matrix of type SquareMatrix.
- subtractIfCan: (%, %) -> Union(%, failed) if % has AbelianGroup or R has AbelianGroup
- symmetric?: % -> Boolean
from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- trace: % -> R
from SquareMatrixCategory(ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- transpose: % -> %
transpose(m)
returns the transpose of the matrixm
.
- zero?: % -> Boolean
from AbelianMonoid
AbelianGroup if R has AbelianGroup
Algebra R if R has CommutativeRing
BiModule(%, %)
BiModule(R, R)
CancellationAbelianMonoid if % has AbelianGroup or R has AbelianGroup
CoercibleFrom Fraction Integer if R has RetractableTo Fraction Integer
CoercibleFrom Integer if R has RetractableTo Integer
Comparable if R has Finite
ConvertibleTo InputForm if R has ConvertibleTo InputForm
DifferentialExtension R if R has Ring
DifferentialRing if R has DifferentialRing and R has Ring
Evalable R if R has Evalable R
FullyLinearlyExplicitOver R if R has Ring
InnerEvalable(R, R) if R has Evalable R
LinearlyExplicitOver Integer if R has LinearlyExplicitOver Integer and R has Ring
LinearlyExplicitOver R if R has Ring
MagmaWithUnit if R has SemiRing
Module R if R has CommutativeRing
NonAssociativeAlgebra R if R has CommutativeRing
NonAssociativeRing if R has Ring
NonAssociativeRng if R has Ring
NonAssociativeSemiRing if R has SemiRing
PartialDifferentialRing Symbol if R has PartialDifferentialRing Symbol and R has Ring
RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
RetractableTo Fraction Integer if R has RetractableTo Fraction Integer
RetractableTo Integer if R has RetractableTo Integer
RightModule Integer if R has LinearlyExplicitOver Integer and R has Ring
SquareMatrixCategory(ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
unitsKnown if R has Ring or R has unitsKnown and R has CommutativeStar