RightOpenIntervalRootCharacterization(TheField, ThePolDom)ΒΆ
reclos.spad line 410 [edit on github]
TheField: Join(OrderedRing, Field)
ThePolDom: UnivariatePolynomialCategory TheField
RightOpenIntervalRootCharacterization provides work with interval root coding.
- allRootsOf: ThePolDom -> List %
from RealRootCharacterizationCategory(TheField, ThePolDom)
- approximate: (ThePolDom, %, TheField) -> TheField
from RealRootCharacterizationCategory(TheField, ThePolDom)
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- definingPolynomial: % -> ThePolDom
from RealRootCharacterizationCategory(TheField, ThePolDom)
- latex: % -> String
from SetCategory
- left: % -> TheField
left(rootChar)
is the left bound of the isolating interval
- middle: % -> TheField
middle(rootChar)
is the middle of the isolating interval
- mightHaveRoots: (ThePolDom, %) -> Boolean
mightHaveRoots(p, r)
isfalse
ifp.r
is not 0
- negative?: (ThePolDom, %) -> Boolean
from RealRootCharacterizationCategory(TheField, ThePolDom)
- positive?: (ThePolDom, %) -> Boolean
from RealRootCharacterizationCategory(TheField, ThePolDom)
- recip: (ThePolDom, %) -> Union(ThePolDom, failed)
from RealRootCharacterizationCategory(TheField, ThePolDom)
- refine: % -> %
refine(rootChar)
shrinks isolating interval aroundrootChar
- relativeApprox: (ThePolDom, %, TheField) -> TheField
relativeApprox(exp, c, p) = a
is relatively close to exp as a polynomial inc
up to precisionp
- right: % -> TheField
right(rootChar)
is the right bound of the isolating interval
- rootOf: (ThePolDom, PositiveInteger) -> Union(%, failed)
from RealRootCharacterizationCategory(TheField, ThePolDom)
- sign: (ThePolDom, %) -> Integer
from RealRootCharacterizationCategory(TheField, ThePolDom)
- size: % -> TheField
The size of the isolating interval
- zero?: (ThePolDom, %) -> Boolean
from RealRootCharacterizationCategory(TheField, ThePolDom)
RealRootCharacterizationCategory(TheField, ThePolDom)