RightOpenIntervalRootCharacterization(TheField, ThePolDom)ΒΆ

reclos.spad line 410 [edit on github]

RightOpenIntervalRootCharacterization provides work with interval root coding.

=: (%, %) -> Boolean

from BasicType

~=: (%, %) -> Boolean

from BasicType

allRootsOf: ThePolDom -> List %

from RealRootCharacterizationCategory(TheField, ThePolDom)

approximate: (ThePolDom, %, TheField) -> TheField

from RealRootCharacterizationCategory(TheField, ThePolDom)

coerce: % -> OutputForm

from CoercibleTo OutputForm

definingPolynomial: % -> ThePolDom

from RealRootCharacterizationCategory(TheField, ThePolDom)

latex: % -> String

from SetCategory

left: % -> TheField

left(rootChar) is the left bound of the isolating interval

middle: % -> TheField

middle(rootChar) is the middle of the isolating interval

mightHaveRoots: (ThePolDom, %) -> Boolean

mightHaveRoots(p, r) is false if p.r is not 0

negative?: (ThePolDom, %) -> Boolean

from RealRootCharacterizationCategory(TheField, ThePolDom)

positive?: (ThePolDom, %) -> Boolean

from RealRootCharacterizationCategory(TheField, ThePolDom)

recip: (ThePolDom, %) -> Union(ThePolDom, failed)

from RealRootCharacterizationCategory(TheField, ThePolDom)

refine: % -> %

refine(rootChar) shrinks isolating interval around rootChar

relativeApprox: (ThePolDom, %, TheField) -> TheField

relativeApprox(exp, c, p) = a is relatively close to exp as a polynomial in c up to precision p

right: % -> TheField

right(rootChar) is the right bound of the isolating interval

rootOf: (ThePolDom, PositiveInteger) -> Union(%, failed)

from RealRootCharacterizationCategory(TheField, ThePolDom)

sign: (ThePolDom, %) -> Integer

from RealRootCharacterizationCategory(TheField, ThePolDom)

size: % -> TheField

The size of the isolating interval

zero?: (ThePolDom, %) -> Boolean

from RealRootCharacterizationCategory(TheField, ThePolDom)

BasicType

CoercibleTo OutputForm

RealRootCharacterizationCategory(TheField, ThePolDom)

SetCategory