OrderedRingΒΆ

catdef.spad line 1054 [edit on github]

Ordered sets which are also rings, that is, domains where the ring operations are compatible with the ordering.

0: %

from AbelianMonoid

1: %

from MagmaWithUnit

*: (%, %) -> %

from LeftModule %

*: (Integer, %) -> %

from AbelianGroup

*: (NonNegativeInteger, %) -> %

from AbelianMonoid

*: (PositiveInteger, %) -> %

from AbelianSemiGroup

+: (%, %) -> %

from AbelianSemiGroup

-: % -> %

from AbelianGroup

-: (%, %) -> %

from AbelianGroup

<=: (%, %) -> Boolean

from PartialOrder

<: (%, %) -> Boolean

from PartialOrder

=: (%, %) -> Boolean

from BasicType

>=: (%, %) -> Boolean

from PartialOrder

>: (%, %) -> Boolean

from PartialOrder

^: (%, NonNegativeInteger) -> %

from MagmaWithUnit

^: (%, PositiveInteger) -> %

from Magma

~=: (%, %) -> Boolean

from BasicType

abs: % -> %

abs(x) returns the absolute value of x.

annihilate?: (%, %) -> Boolean

from Rng

antiCommutator: (%, %) -> %

from NonAssociativeSemiRng

associator: (%, %, %) -> %

from NonAssociativeRng

characteristic: () -> NonNegativeInteger

from NonAssociativeRing

coerce: % -> OutputForm

from CoercibleTo OutputForm

coerce: Integer -> %

from NonAssociativeRing

commutator: (%, %) -> %

from NonAssociativeRng

latex: % -> String

from SetCategory

leftPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

leftPower: (%, PositiveInteger) -> %

from Magma

leftRecip: % -> Union(%, failed)

from MagmaWithUnit

max: (%, %) -> %

from OrderedSet

min: (%, %) -> %

from OrderedSet

negative?: % -> Boolean

negative?(x) tests whether x is strictly less than 0.

one?: % -> Boolean

from MagmaWithUnit

opposite?: (%, %) -> Boolean

from AbelianMonoid

positive?: % -> Boolean

positive?(x) tests whether x is strictly greater than 0.

recip: % -> Union(%, failed)

from MagmaWithUnit

rightPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

rightPower: (%, PositiveInteger) -> %

from Magma

rightRecip: % -> Union(%, failed)

from MagmaWithUnit

sample: %

from AbelianMonoid

sign: % -> Integer

sign(x) is 1 if x is positive, -1 if x is negative, 0 if x equals 0.

smaller?: (%, %) -> Boolean

from Comparable

subtractIfCan: (%, %) -> Union(%, failed)

from CancellationAbelianMonoid

zero?: % -> Boolean

from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianSemiGroup

BasicType

BiModule(%, %)

CancellationAbelianMonoid

CharacteristicZero

CoercibleTo OutputForm

Comparable

LeftModule %

Magma

MagmaWithUnit

Monoid

NonAssociativeRing

NonAssociativeRng

NonAssociativeSemiRing

NonAssociativeSemiRng

OrderedAbelianGroup

OrderedAbelianMonoid

OrderedAbelianSemiGroup

OrderedCancellationAbelianMonoid

OrderedSet

PartialOrder

RightModule %

Ring

Rng

SemiGroup

SemiRing

SemiRng

SetCategory

unitsKnown