RealRootCharacterizationCategory(TheField, ThePols)ΒΆ
reclos.spad line 170 [edit on github]
TheField: Join(OrderedRing, Field)
ThePols: UnivariatePolynomialCategory TheField
RealRootCharacterizationCategory provides common access functions for all real root codings.
- allRootsOf: ThePols -> List %
allRootsOf(pol)
creates all the roots ofpol
in the Real Closure, assumed in order.
- approximate: (ThePols, %, TheField) -> TheField
approximate(term, root, prec)
gives an approximation ofterm
overroot
with precisionprec
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- definingPolynomial: % -> ThePols
definingPolynomial(aRoot)
gives a polynomial such thatdefiningPolynomial(aRoot).aRoot = 0
- latex: % -> String
from SetCategory
- negative?: (ThePols, %) -> Boolean
negative?(pol, aRoot)
answers ifpol
interpreted asaRoot
is negative
- positive?: (ThePols, %) -> Boolean
positive?(pol, aRoot)
answers ifpol
interpreted asaRoot
is positive
- recip: (ThePols, %) -> Union(ThePols, failed)
recip(pol, aRoot)
tries to inversepol
interpreted asaRoot
- relativeApprox: (ThePols, %, TheField) -> TheField
approximate(term, root, prec)
gives an approximation ofterm
overroot
with precisionprec
- rootOf: (ThePols, PositiveInteger) -> Union(%, failed)
rootOf(pol, n)
gives then
th root for the order of the Real Closure
- sign: (ThePols, %) -> Integer
sign(pol, aRoot)
gives the sign ofpol
interpreted asaRoot
- zero?: (ThePols, %) -> Boolean
zero?(pol, aRoot)
answers ifpol
interpreted asaRoot
is0