RealClosedFieldΒΆ
reclos.spad line 258 [edit on github]
RealClosedField provides common access functions for all real closed fields.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from LeftModule %
- *: (%, Fraction Integer) -> %
from RightModule Fraction Integer
- *: (%, Integer) -> %
from RightModule Integer
- *: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- <=: (%, %) -> Boolean
from PartialOrder
- <: (%, %) -> Boolean
from PartialOrder
- >=: (%, %) -> Boolean
from PartialOrder
- >: (%, %) -> Boolean
from PartialOrder
- ^: (%, Fraction Integer) -> %
from RadicalCategory
- ^: (%, Integer) -> %
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- abs: % -> %
from OrderedRing
- allRootsOf: Polynomial % -> List %
allRootsOf(pol)
creates all the roots ofpol
naming each uniquely
- allRootsOf: Polynomial Fraction Integer -> List %
allRootsOf(pol)
creates all the roots ofpol
naming each uniquely
- allRootsOf: Polynomial Integer -> List %
allRootsOf(pol)
creates all the roots ofpol
naming each uniquely
- allRootsOf: SparseUnivariatePolynomial % -> List %
allRootsOf(pol)
creates all the roots ofpol
naming each uniquely
- allRootsOf: SparseUnivariatePolynomial Fraction Integer -> List %
allRootsOf(pol)
creates all the roots ofpol
naming each uniquely
- allRootsOf: SparseUnivariatePolynomial Integer -> List %
allRootsOf(pol)
creates all the roots ofpol
naming each uniquely
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- approximate: (%, %) -> Fraction Integer
approximate(n, p)
gives an approximation ofn
that has precisionp
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- coerce: % -> %
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Fraction Integer -> %
from CoercibleFrom Fraction Integer
- coerce: Integer -> %
from NonAssociativeRing
- commutator: (%, %) -> %
from NonAssociativeRng
- divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
- euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
- expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
from GcdDomain
- inv: % -> %
from DivisionRing
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- mainDefiningPolynomial: % -> Union(SparseUnivariatePolynomial %, failed)
mainDefiningPolynomial(x)
is the defining polynomial for the main algebraic quantity ofx
- mainForm: % -> Union(OutputForm, failed)
mainForm(x)
is the main algebraic quantity name ofx
- mainValue: % -> Union(SparseUnivariatePolynomial %, failed)
mainValue(x)
is the expression ofx
in terms ofSparseUnivariatePolynomial(\%)
- max: (%, %) -> %
from OrderedSet
- min: (%, %) -> %
from OrderedSet
- multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
- negative?: % -> Boolean
from OrderedRing
- nthRoot: (%, Integer) -> %
from RadicalCategory
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- plenaryPower: (%, PositiveInteger) -> %
- positive?: % -> Boolean
from OrderedRing
- principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
- quo: (%, %) -> %
from EuclideanDomain
- recip: % -> Union(%, failed)
from MagmaWithUnit
- rem: (%, %) -> %
from EuclideanDomain
- rename!: (%, OutputForm) -> %
rename!(x, name)
changes the wayx
is printed
- rename: (%, OutputForm) -> %
rename(x, name)
gives a new number that prints as name
- retract: % -> Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer
from RetractableTo Integer
- retractIfCan: % -> Union(Fraction Integer, failed)
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed)
from RetractableTo Integer
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- rootOf: (SparseUnivariatePolynomial %, PositiveInteger) -> Union(%, failed)
rootOf(pol, n)
creates then
th root for the order ofpol
and gives it unique name
- rootOf: (SparseUnivariatePolynomial %, PositiveInteger, OutputForm) -> Union(%, failed)
rootOf(pol, n, name)
creates then
th root for the order ofpol
and names itname
- sample: %
from AbelianMonoid
- sign: % -> Integer
from OrderedRing
- sizeLess?: (%, %) -> Boolean
from EuclideanDomain
- smaller?: (%, %) -> Boolean
from Comparable
- sqrt: % -> %
sqrt(x)
isx ^ (1/2)
- sqrt: (%, PositiveInteger) -> %
sqrt(x, n)
isx ^ (1/n)
- sqrt: Integer -> %
sqrt(x)
isx ^ (1/2)
- squareFree: % -> Factored %
- squareFreePart: % -> %
- subtractIfCan: (%, %) -> Union(%, failed)
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- zero?: % -> Boolean
from AbelianMonoid
Algebra %
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
CoercibleFrom Fraction Integer
FullyRetractableTo Fraction Integer
Module %
NonAssociativeAlgebra Fraction Integer
OrderedCancellationAbelianMonoid