JetBundleBaseFunctionCategory JBΒΆ
jet.spad line 1249 [edit on github]
JetBundleBaseFunctionCategory defines the category of functions (local sections) of the base space of a jet bundle, i.e. functions depending only on the independent variables. Such a category is needed e.g. for the representation of solutions.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from LeftModule %
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- autoReduce: List % -> List %
from JetBundleFunctionCategory JB
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- class: % -> NonNegativeInteger
from JetBundleFunctionCategory JB
- coerce: % -> %
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Integer -> %
from NonAssociativeRing
- coerce: JB -> %
from JetBundleFunctionCategory JB
- commutator: (%, %) -> %
from NonAssociativeRng
- const?: % -> Boolean
from JetBundleFunctionCategory JB
- D: (%, List Symbol) -> %
- D: (%, List Symbol, List NonNegativeInteger) -> %
- D: (%, Symbol) -> %
- D: (%, Symbol, NonNegativeInteger) -> %
- denominator: % -> %
from JetBundleFunctionCategory JB
- differentiate: (%, JB) -> %
from JetBundleFunctionCategory JB
- differentiate: (%, List Symbol) -> %
- differentiate: (%, List Symbol, List NonNegativeInteger) -> %
- differentiate: (%, Symbol) -> %
- differentiate: (%, Symbol, NonNegativeInteger) -> %
- dimension: (List %, SparseEchelonMatrix(JB, %), NonNegativeInteger) -> NonNegativeInteger
from JetBundleFunctionCategory JB
- dSubst: (%, JB, %) -> %
from JetBundleFunctionCategory JB
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- extractSymbol: SparseEchelonMatrix(JB, %) -> SparseEchelonMatrix(JB, %)
from JetBundleFunctionCategory JB
- formalDiff2: (%, PositiveInteger, SparseEchelonMatrix(JB, %)) -> Record(DPhi: %, JVars: List JB)
from JetBundleFunctionCategory JB
- formalDiff2: (List %, PositiveInteger, SparseEchelonMatrix(JB, %)) -> Record(DSys: List %, JVars: List List JB)
from JetBundleFunctionCategory JB
- formalDiff: (%, List NonNegativeInteger) -> %
from JetBundleFunctionCategory JB
- formalDiff: (%, PositiveInteger) -> %
from JetBundleFunctionCategory JB
- formalDiff: (List %, PositiveInteger) -> List %
from JetBundleFunctionCategory JB
- freeOf?: (%, JB) -> Boolean
from JetBundleFunctionCategory JB
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
from GcdDomain
- getNotation: () -> Symbol
from JetBundleFunctionCategory JB
- jacobiMatrix: (List %, List List JB) -> SparseEchelonMatrix(JB, %)
from JetBundleFunctionCategory JB
- jacobiMatrix: List % -> SparseEchelonMatrix(JB, %)
from JetBundleFunctionCategory JB
- jetVariables: % -> List JB
from JetBundleFunctionCategory JB
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- leadingDer: % -> JB
from JetBundleFunctionCategory JB
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- numDepVar: () -> PositiveInteger
from JetBundleFunctionCategory JB
- numerator: % -> %
from JetBundleFunctionCategory JB
- numIndVar: () -> PositiveInteger
from JetBundleFunctionCategory JB
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: % -> NonNegativeInteger
from JetBundleFunctionCategory JB
- orderDim: (List %, SparseEchelonMatrix(JB, %), NonNegativeInteger) -> NonNegativeInteger
from JetBundleFunctionCategory JB
- P: (PositiveInteger, List NonNegativeInteger) -> %
from JetBundleFunctionCategory JB
- P: (PositiveInteger, NonNegativeInteger) -> %
from JetBundleFunctionCategory JB
- P: List NonNegativeInteger -> %
from JetBundleFunctionCategory JB
- P: NonNegativeInteger -> %
from JetBundleFunctionCategory JB
- plenaryPower: (%, PositiveInteger) -> %
from NonAssociativeAlgebra %
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reduceMod: (List %, List %) -> List %
from JetBundleFunctionCategory JB
- retract: % -> JB
from RetractableTo JB
- retractIfCan: % -> Union(JB, failed)
from RetractableTo JB
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- setNotation: Symbol -> Void
from JetBundleFunctionCategory JB
- simplify: (List %, SparseEchelonMatrix(JB, %)) -> Record(Sys: List %, JM: SparseEchelonMatrix(JB, %), Depend: Union(failed, List List NonNegativeInteger))
from JetBundleFunctionCategory JB
- simpMod: (List %, List %) -> List %
from JetBundleFunctionCategory JB
- simpMod: (List %, SparseEchelonMatrix(JB, %), List %) -> Record(Sys: List %, JM: SparseEchelonMatrix(JB, %), Depend: Union(failed, List List NonNegativeInteger))
from JetBundleFunctionCategory JB
- simpOne: % -> %
from JetBundleFunctionCategory JB
- solveFor: (%, JB) -> Union(%, failed)
from JetBundleFunctionCategory JB
- sortLD: List % -> List %
from JetBundleFunctionCategory JB
- subst: (%, JB, %) -> %
from JetBundleFunctionCategory JB
- subtractIfCan: (%, %) -> Union(%, failed)
- symbol: List % -> SparseEchelonMatrix(JB, %)
from JetBundleFunctionCategory JB
- U: () -> %
from JetBundleFunctionCategory JB
- U: PositiveInteger -> %
from JetBundleFunctionCategory JB
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- X: () -> %
from JetBundleFunctionCategory JB
- X: PositiveInteger -> %
from JetBundleFunctionCategory JB
- zero?: % -> Boolean
from AbelianMonoid
Algebra %
BiModule(%, %)
Module %