AlgebraicallyClosedFunctionSpace R¶
algfunc.spad line 147 [edit on github]
R: Join(Comparable, IntegralDomain)
Model for algebraically closed function spaces.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from LeftModule %
- *: (%, Fraction Integer) -> %
from RightModule Fraction Integer
- *: (%, Integer) -> % if R has LinearlyExplicitOver Integer
from RightModule Integer
- *: (%, R) -> %
from RightModule R
- *: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, %) -> %
from Field
- /: (SparseMultivariatePolynomial(R, Kernel %), SparseMultivariatePolynomial(R, Kernel %)) -> %
from FunctionSpace R
- ^: (%, Fraction Integer) -> %
from RadicalCategory
- ^: (%, Integer) -> %
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- algtower: % -> List Kernel %
from FunctionSpace R
- algtower: List % -> List Kernel %
from FunctionSpace R
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- applyQuote: (Symbol, %) -> %
from FunctionSpace R
- applyQuote: (Symbol, %, %) -> %
from FunctionSpace R
- applyQuote: (Symbol, %, %, %) -> %
from FunctionSpace R
- applyQuote: (Symbol, %, %, %, %) -> %
from FunctionSpace R
- applyQuote: (Symbol, List %) -> %
from FunctionSpace R
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- belong?: BasicOperator -> Boolean
from ExpressionSpace
- box: % -> %
from ExpressionSpace
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if R has CharacteristicNonZero
- coerce: % -> %
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: AlgebraicNumber -> % if R has RetractableTo Integer
- coerce: Fraction Integer -> %
from CoercibleFrom Fraction Integer
- coerce: Fraction Polynomial Fraction R -> %
from FunctionSpace R
- coerce: Fraction Polynomial R -> %
from CoercibleFrom Fraction Polynomial R
- coerce: Fraction R -> %
from FunctionSpace R
- coerce: Integer -> %
from NonAssociativeRing
- coerce: Kernel % -> %
from CoercibleFrom Kernel %
- coerce: Polynomial Fraction R -> %
from FunctionSpace R
- coerce: Polynomial R -> %
from CoercibleFrom Polynomial R
- coerce: R -> %
from CoercibleFrom R
- coerce: SparseMultivariatePolynomial(R, Kernel %) -> %
from FunctionSpace R
- coerce: Symbol -> %
from CoercibleFrom Symbol
- commutator: (%, %) -> %
from NonAssociativeRng
- convert: % -> InputForm if R has ConvertibleTo InputForm
from ConvertibleTo InputForm
- convert: % -> Pattern Float if R has ConvertibleTo Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if R has ConvertibleTo Pattern Integer
from ConvertibleTo Pattern Integer
- convert: Factored % -> %
from FunctionSpace R
- D: (%, List Symbol) -> %
- D: (%, List Symbol, List NonNegativeInteger) -> %
- D: (%, Symbol) -> %
- D: (%, Symbol, NonNegativeInteger) -> %
- definingPolynomial: % -> %
from ExpressionSpace
- denom: % -> SparseMultivariatePolynomial(R, Kernel %)
from FunctionSpace R
- denominator: % -> %
from FunctionSpace R
- differentiate: (%, List Symbol) -> %
- differentiate: (%, List Symbol, List NonNegativeInteger) -> %
- differentiate: (%, Symbol) -> %
- differentiate: (%, Symbol, NonNegativeInteger) -> %
- distribute: % -> %
from ExpressionSpace
- distribute: (%, %) -> %
from ExpressionSpace
- divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
- elt: (BasicOperator, %) -> %
from ExpressionSpace
- elt: (BasicOperator, %, %) -> %
from ExpressionSpace
- elt: (BasicOperator, %, %, %) -> %
from ExpressionSpace
- elt: (BasicOperator, %, %, %, %) -> %
from ExpressionSpace
- elt: (BasicOperator, %, %, %, %, %) -> %
from ExpressionSpace
- elt: (BasicOperator, %, %, %, %, %, %) -> %
from ExpressionSpace
- elt: (BasicOperator, %, %, %, %, %, %, %) -> %
from ExpressionSpace
- elt: (BasicOperator, %, %, %, %, %, %, %, %) -> %
from ExpressionSpace
- elt: (BasicOperator, %, %, %, %, %, %, %, %, %) -> %
from ExpressionSpace
- elt: (BasicOperator, List %) -> %
from ExpressionSpace
- euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
- eval: (%, %, %) -> %
from InnerEvalable(%, %)
- eval: (%, BasicOperator, % -> %) -> %
from ExpressionSpace
- eval: (%, BasicOperator, %, Symbol) -> % if R has ConvertibleTo InputForm
from FunctionSpace R
- eval: (%, BasicOperator, List % -> %) -> %
from ExpressionSpace
- eval: (%, Equation %) -> %
from Evalable %
- eval: (%, Kernel %, %) -> %
from InnerEvalable(Kernel %, %)
- eval: (%, List %, List %) -> %
from InnerEvalable(%, %)
- eval: (%, List BasicOperator, List %, Symbol) -> % if R has ConvertibleTo InputForm
from FunctionSpace R
- eval: (%, List BasicOperator, List(% -> %)) -> %
from ExpressionSpace
- eval: (%, List BasicOperator, List(List % -> %)) -> %
from ExpressionSpace
- eval: (%, List Equation %) -> %
from Evalable %
- eval: (%, List Kernel %, List %) -> %
from InnerEvalable(Kernel %, %)
- eval: (%, List Symbol, List NonNegativeInteger, List(% -> %)) -> %
from FunctionSpace R
- eval: (%, List Symbol, List NonNegativeInteger, List(List % -> %)) -> %
from FunctionSpace R
- eval: (%, List Symbol, List(% -> %)) -> %
from ExpressionSpace
- eval: (%, List Symbol, List(List % -> %)) -> %
from ExpressionSpace
- eval: (%, Symbol, % -> %) -> %
from ExpressionSpace
- eval: (%, Symbol, List % -> %) -> %
from ExpressionSpace
- eval: (%, Symbol, NonNegativeInteger, % -> %) -> %
from FunctionSpace R
- eval: (%, Symbol, NonNegativeInteger, List % -> %) -> %
from FunctionSpace R
- even?: % -> Boolean if % has RetractableTo Integer
from ExpressionSpace
- expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
- freeOf?: (%, %) -> Boolean
from ExpressionSpace
- freeOf?: (%, Symbol) -> Boolean
from ExpressionSpace
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
from GcdDomain
- ground?: % -> Boolean
from FunctionSpace R
- ground: % -> R
from FunctionSpace R
- height: % -> NonNegativeInteger
from ExpressionSpace
- inv: % -> %
from DivisionRing
- is?: (%, BasicOperator) -> Boolean
from ExpressionSpace
- is?: (%, Symbol) -> Boolean
from ExpressionSpace
- isExpt: % -> Union(Record(var: Kernel %, exponent: Integer), failed)
from FunctionSpace R
- isExpt: (%, BasicOperator) -> Union(Record(var: Kernel %, exponent: Integer), failed)
from FunctionSpace R
- isExpt: (%, Symbol) -> Union(Record(var: Kernel %, exponent: Integer), failed)
from FunctionSpace R
- isMult: % -> Union(Record(coef: Integer, var: Kernel %), failed)
from FunctionSpace R
- isPlus: % -> Union(List %, failed)
from FunctionSpace R
- isPower: % -> Union(Record(val: %, exponent: Integer), failed)
from FunctionSpace R
- isTimes: % -> Union(List %, failed)
from FunctionSpace R
- kernel: (BasicOperator, %) -> %
from ExpressionSpace
- kernel: (BasicOperator, List %) -> %
from ExpressionSpace
- kernels: % -> List Kernel %
from ExpressionSpace
- kernels: List % -> List Kernel %
from ExpressionSpace
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- mainKernel: % -> Union(Kernel %, failed)
from ExpressionSpace
- map: (% -> %, Kernel %) -> %
from ExpressionSpace
- minPoly: Kernel % -> SparseUnivariatePolynomial %
from ExpressionSpace
- multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
- nthRoot: (%, Integer) -> %
from RadicalCategory
- numer: % -> SparseMultivariatePolynomial(R, Kernel %)
from FunctionSpace R
- numerator: % -> %
from FunctionSpace R
- odd?: % -> Boolean if % has RetractableTo Integer
from ExpressionSpace
- one?: % -> Boolean
from MagmaWithUnit
- operators: % -> List BasicOperator
from ExpressionSpace
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- paren: % -> %
from ExpressionSpace
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if R has PatternMatchable Float
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if R has PatternMatchable Integer
from PatternMatchable Integer
- plenaryPower: (%, PositiveInteger) -> %
from NonAssociativeAlgebra R
- principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
- quo: (%, %) -> %
from EuclideanDomain
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if R has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix R, vec: Vector R)
from LinearlyExplicitOver R
- reducedSystem: Matrix % -> Matrix Integer if R has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix R
from LinearlyExplicitOver R
- rem: (%, %) -> %
from EuclideanDomain
- retract: % -> AlgebraicNumber if R has RetractableTo Integer
- retract: % -> Fraction Integer if R has RetractableTo Fraction Integer or R has RetractableTo Integer
from RetractableTo Fraction Integer
- retract: % -> Fraction Polynomial R
from RetractableTo Fraction Polynomial R
- retract: % -> Integer if R has RetractableTo Integer
from RetractableTo Integer
- retract: % -> Kernel %
from RetractableTo Kernel %
- retract: % -> Polynomial R
from RetractableTo Polynomial R
- retract: % -> R
from RetractableTo R
- retract: % -> Symbol
from RetractableTo Symbol
- retractIfCan: % -> Union(AlgebraicNumber, failed) if R has RetractableTo Integer
- retractIfCan: % -> Union(Fraction Integer, failed) if R has RetractableTo Fraction Integer or R has RetractableTo Integer
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Fraction Polynomial R, failed)
from RetractableTo Fraction Polynomial R
- retractIfCan: % -> Union(Integer, failed) if R has RetractableTo Integer
from RetractableTo Integer
- retractIfCan: % -> Union(Kernel %, failed)
from RetractableTo Kernel %
- retractIfCan: % -> Union(Polynomial R, failed)
from RetractableTo Polynomial R
- retractIfCan: % -> Union(R, failed)
from RetractableTo R
- retractIfCan: % -> Union(Symbol, failed)
from RetractableTo Symbol
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- rootOf: % -> %
rootOf(p)
returnsy
such thatp(y) = 0
. Error: ifp
has more than one variabley
.
- rootOf: (%, Symbol) -> %
rootOf(p, y)
returnsy
such thatp(y) = 0
. The object returned displays as'y
.- rootOf: (SparseUnivariatePolynomial %, Symbol) -> %
- rootOf: Polynomial % -> %
- rootOf: SparseUnivariatePolynomial % -> %
- rootsOf: % -> List %
rootsOf(p, y)
returns[y1, ..., yn]
such thatp(yi) = 0
; Note: the returned valuesy1
, …,yn
contain new symbols which are bound in the interpreter to the respective values. Error: ifp
has more than one variabley
.
- rootsOf: (%, Symbol) -> List %
rootsOf(p, y)
returns[y1, ..., yn]
such thatp(yi) = 0
; The returned roots contain new symbols'\%z0
,'\%z1
…; Note: the new symbols are bound in the interpreter to the respective values.- rootsOf: (SparseUnivariatePolynomial %, Symbol) -> List %
- rootsOf: Polynomial % -> List %
- rootsOf: SparseUnivariatePolynomial % -> List %
rootSum: (%, SparseUnivariatePolynomial %, Symbol) -> %
- sample: %
from AbelianMonoid
- sizeLess?: (%, %) -> Boolean
from EuclideanDomain
- smaller?: (%, %) -> Boolean
from Comparable
- sqrt: % -> %
from RadicalCategory
- squareFree: % -> Factored %
- squareFreePart: % -> %
- subst: (%, Equation %) -> %
from ExpressionSpace
- subst: (%, List Equation %) -> %
from ExpressionSpace
- subst: (%, List Kernel %, List %) -> %
from ExpressionSpace
- subtractIfCan: (%, %) -> Union(%, failed)
- tower: % -> List Kernel %
from ExpressionSpace
- tower: List % -> List Kernel %
from ExpressionSpace
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- univariate: (%, Kernel %) -> Fraction SparseUnivariatePolynomial %
from FunctionSpace R
- variables: % -> List Symbol
from FunctionSpace R
- variables: List % -> List Symbol
from FunctionSpace R
- zero?: % -> Boolean
from AbelianMonoid
- zeroOf: % -> %
zeroOf(p)
returnsy
such thatp(y) = 0
. The valuey
is expressed in terms of radicals if possible, and otherwise as an implicit algebraic quantity. Error: ifp
has more than one variable.
- zeroOf: (%, Symbol) -> %
zeroOf(p, y)
returnsy
such thatp(y) = 0
. The valuey
is expressed in terms of radicals if possible, and otherwise as an implicit algebraic quantity which displays as'y
.- zeroOf: (SparseUnivariatePolynomial %, Symbol) -> %
- zeroOf: Polynomial % -> %
- zeroOf: SparseUnivariatePolynomial % -> %
- zerosOf: % -> List %
zerosOf(p)
returns[y1, ..., yn]
such thatp(yi) = 0
. Theyi
's
are expressed in radicals if possible. Note: the returned valuesy1
, …,yn
contain new symbols which are bound in the interpreter to the respective values. Error: ifp
has more than one variable.
- zerosOf: (%, Symbol) -> List %
zerosOf(p, y)
returns[y1, ..., yn]
such thatp(yi) = 0
. Theyi
's
are expressed in radicals if possible, and otherwise as implicit algebraic quantities containing new symbols which display as'\%z0
,'\%z1
, …; The new symbols are bound in the interpreter to the respective values.- zerosOf: (SparseUnivariatePolynomial %, Symbol) -> List %
- zerosOf: Polynomial % -> List %
- zerosOf: SparseUnivariatePolynomial % -> List %
Algebra %
Algebra R
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
BiModule(R, R)
CharacteristicNonZero if R has CharacteristicNonZero
CharacteristicZero if R has CharacteristicZero
CoercibleFrom AlgebraicNumber if R has RetractableTo Integer
CoercibleFrom Fraction Integer if R has RetractableTo Fraction Integer or R has RetractableTo Integer
CoercibleFrom Fraction Polynomial R
CoercibleFrom Integer if R has RetractableTo Integer
ConvertibleTo InputForm if R has ConvertibleTo InputForm
ConvertibleTo Pattern Float if R has ConvertibleTo Pattern Float
ConvertibleTo Pattern Integer if R has ConvertibleTo Pattern Integer
Evalable %
InnerEvalable(%, %)
InnerEvalable(Kernel %, %)
LinearlyExplicitOver Integer if R has LinearlyExplicitOver Integer
Module %
Module R
NonAssociativeAlgebra Fraction Integer
PartialDifferentialRing Symbol
PatternMatchable Float if R has PatternMatchable Float
PatternMatchable Integer if R has PatternMatchable Integer
RetractableTo AlgebraicNumber if R has RetractableTo Integer
RetractableTo Fraction Integer if R has RetractableTo Integer or R has RetractableTo Fraction Integer
RetractableTo Fraction Polynomial R
RetractableTo Integer if R has RetractableTo Integer
RightModule Integer if R has LinearlyExplicitOver Integer