RomanNumeralΒΆ

integer.spad line 253

RomanNumeral provides functions for converting integers to roman numerals.

0: %
from AbelianMonoid
1: %
from MagmaWithUnit
*: (%, %) -> %
from Magma
*: (Integer, %) -> %
from AbelianGroup
*: (NonNegativeInteger, %) -> %
from AbelianMonoid
*: (PositiveInteger, %) -> %
from AbelianSemiGroup
+: (%, %) -> %
from AbelianSemiGroup
-: % -> %
from AbelianGroup
-: (%, %) -> %
from AbelianGroup
<: (%, %) -> Boolean
from PartialOrder
<=: (%, %) -> Boolean
from PartialOrder
=: (%, %) -> Boolean
from BasicType
>: (%, %) -> Boolean
from PartialOrder
>=: (%, %) -> Boolean
from PartialOrder
^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
^: (%, PositiveInteger) -> %
from Magma
~=: (%, %) -> Boolean
from BasicType
abs: % -> %
from OrderedRing
addmod: (%, %, %) -> %
from IntegerNumberSystem
annihilate?: (%, %) -> Boolean
from Rng
antiCommutator: (%, %) -> %
from NonAssociativeSemiRng
associates?: (%, %) -> Boolean
from EntireRing
associator: (%, %, %) -> %
from NonAssociativeRng
base: () -> %
from IntegerNumberSystem
binomial: (%, %) -> %
from CombinatorialFunctionCategory
bit?: (%, %) -> Boolean
from IntegerNumberSystem
characteristic: () -> NonNegativeInteger
from NonAssociativeRing
coerce: % -> %
from Algebra %
coerce: % -> OutputForm
from CoercibleTo OutputForm
coerce: Integer -> %
from NonAssociativeRing
commutator: (%, %) -> %
from NonAssociativeRng
convert: % -> DoubleFloat
from ConvertibleTo DoubleFloat
convert: % -> Float
from ConvertibleTo Float
convert: % -> InputForm
from ConvertibleTo InputForm
convert: % -> Integer
from ConvertibleTo Integer
convert: % -> Pattern Integer
from ConvertibleTo Pattern Integer
convert: Symbol -> %
convert(n) creates a roman numeral for symbol n.
copy: % -> %
from IntegerNumberSystem
D: % -> %
from DifferentialRing
D: (%, NonNegativeInteger) -> %
from DifferentialRing
dec: % -> %
from IntegerNumberSystem
differentiate: % -> %
from DifferentialRing
differentiate: (%, NonNegativeInteger) -> %
from DifferentialRing
divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
even?: % -> Boolean
from IntegerNumberSystem
expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
exquo: (%, %) -> Union(%, failed)
from EntireRing
extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
factor: % -> Factored %
from UniqueFactorizationDomain
factorial: % -> %
from CombinatorialFunctionCategory
gcd: (%, %) -> %
from GcdDomain
gcd: List % -> %
from GcdDomain
gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
from GcdDomain
hash: % -> SingleInteger
from SetCategory
hashUpdate!: (HashState, %) -> HashState
from SetCategory
inc: % -> %
from IntegerNumberSystem
init: %
from StepThrough
invmod: (%, %) -> %
from IntegerNumberSystem
latex: % -> String
from SetCategory
lcm: (%, %) -> %
from GcdDomain
lcm: List % -> %
from GcdDomain
lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower: (%, PositiveInteger) -> %
from Magma
leftRecip: % -> Union(%, failed)
from MagmaWithUnit
length: % -> %
from IntegerNumberSystem
mask: % -> %
from IntegerNumberSystem
max: (%, %) -> %
from OrderedSet
min: (%, %) -> %
from OrderedSet
mulmod: (%, %, %) -> %
from IntegerNumberSystem
multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
negative?: % -> Boolean
from OrderedRing
nextItem: % -> Union(%, failed)
from StepThrough
odd?: % -> Boolean
from IntegerNumberSystem
one?: % -> Boolean
from MagmaWithUnit
opposite?: (%, %) -> Boolean
from AbelianMonoid
patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %)
from PatternMatchable Integer
permutation: (%, %) -> %
from CombinatorialFunctionCategory
positive?: % -> Boolean
from OrderedRing
positiveRemainder: (%, %) -> %
from IntegerNumberSystem
powmod: (%, %, %) -> %
from IntegerNumberSystem
prime?: % -> Boolean
from UniqueFactorizationDomain
principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
quo: (%, %) -> %
from EuclideanDomain
random: % -> %
from IntegerNumberSystem
rational: % -> Fraction Integer
from IntegerNumberSystem
rational?: % -> Boolean
from IntegerNumberSystem
rationalIfCan: % -> Union(Fraction Integer, failed)
from IntegerNumberSystem
recip: % -> Union(%, failed)
from MagmaWithUnit
rem: (%, %) -> %
from EuclideanDomain
retract: % -> Integer
from RetractableTo Integer
retractIfCan: % -> Union(Integer, failed)
from RetractableTo Integer
rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower: (%, PositiveInteger) -> %
from Magma
rightRecip: % -> Union(%, failed)
from MagmaWithUnit
roman: Integer -> %
roman(n) creates a roman numeral for n.
roman: Symbol -> %
roman(n) creates a roman numeral for symbol n.
sample: %
from AbelianMonoid
shift: (%, %) -> %
from IntegerNumberSystem
sign: % -> Integer
from OrderedRing
sizeLess?: (%, %) -> Boolean
from EuclideanDomain
smaller?: (%, %) -> Boolean
from Comparable
squareFree: % -> Factored %
from UniqueFactorizationDomain
squareFreePart: % -> %
from UniqueFactorizationDomain
submod: (%, %, %) -> %
from IntegerNumberSystem
subtractIfCan: (%, %) -> Union(%, failed)
from CancellationAbelianMonoid
symmetricRemainder: (%, %) -> %
from IntegerNumberSystem
unit?: % -> Boolean
from EntireRing
unitCanonical: % -> %
from EntireRing
unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
zero?: % -> Boolean
from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianSemiGroup

Algebra %

BasicType

BiModule(%, %)

CancellationAbelianMonoid

Canonical

canonicalsClosed

canonicalUnitNormal

CharacteristicZero

CoercibleTo OutputForm

CombinatorialFunctionCategory

CommutativeRing

CommutativeStar

Comparable

ConvertibleTo DoubleFloat

ConvertibleTo Float

ConvertibleTo InputForm

ConvertibleTo Integer

ConvertibleTo Pattern Integer

DifferentialRing

EntireRing

EuclideanDomain

GcdDomain

IntegerNumberSystem

IntegralDomain

LeftModule %

LeftOreRing

Magma

MagmaWithUnit

Module %

Monoid

multiplicativeValuation

NonAssociativeRing

NonAssociativeRng

NonAssociativeSemiRing

NonAssociativeSemiRng

noZeroDivisors

OrderedAbelianGroup

OrderedAbelianMonoid

OrderedAbelianSemiGroup

OrderedCancellationAbelianMonoid

OrderedIntegralDomain

OrderedRing

OrderedSet

PartialOrder

PatternMatchable Integer

PrincipalIdealDomain

RealConstant

RetractableTo Integer

RightModule %

Ring

Rng

SemiGroup

SemiRing

SemiRng

SetCategory

StepThrough

UniqueFactorizationDomain

unitsKnown