NonNegativeIntegerΒΆ

integer.spad line 188

NonNegativeInteger provides functions for non negative integers.

0: %
from AbelianMonoid
1: %
from MagmaWithUnit
*: (%, %) -> %
from Magma
*: (NonNegativeInteger, %) -> %
from AbelianMonoid
*: (PositiveInteger, %) -> %
from AbelianSemiGroup
+: (%, %) -> %
from AbelianSemiGroup
<: (%, %) -> Boolean
from PartialOrder
<=: (%, %) -> Boolean
from PartialOrder
=: (%, %) -> Boolean
from BasicType
>: (%, %) -> Boolean
from PartialOrder
>=: (%, %) -> Boolean
from PartialOrder
^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
^: (%, PositiveInteger) -> %
from Magma
~=: (%, %) -> Boolean
from BasicType
antiCommutator: (%, %) -> %
from NonAssociativeSemiRng
coerce: % -> OutputForm
from CoercibleTo OutputForm
convert: % -> InputForm
from ConvertibleTo InputForm
divide: (%, %) -> Record(quotient: %, remainder: %)
divide(a, b) returns a record containing both remainder and quotient.
exquo: (%, %) -> Union(%, failed)
exquo(a,b) returns the quotient of a and b, or “failed” if b is zero or a rem b is zero.
gcd: (%, %) -> %
gcd(a, b) computes the greatest common divisor of two non negative integers a and b.
hash: % -> SingleInteger
from SetCategory
hashUpdate!: (HashState, %) -> HashState
from SetCategory
latex: % -> String
from SetCategory
leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower: (%, PositiveInteger) -> %
from Magma
leftRecip: % -> Union(%, failed)
from MagmaWithUnit
max: (%, %) -> %
from OrderedSet
min: (%, %) -> %
from OrderedSet
one?: % -> Boolean
from MagmaWithUnit
opposite?: (%, %) -> Boolean
from AbelianMonoid
qcoerce: Integer -> %
qcoerce(n) coerces n to \% trusting that n is nonnegative
quo: (%, %) -> %
a quo b returns the quotient of a and b, forgetting the remainder.
random: % -> %
random(n) returns a random integer from 0 to n-1.
recip: % -> Union(%, failed)
from MagmaWithUnit
rem: (%, %) -> %
a rem b returns the remainder of a and b.
rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower: (%, PositiveInteger) -> %
from Magma
rightRecip: % -> Union(%, failed)
from MagmaWithUnit
sample: %
from AbelianMonoid
shift: (%, Integer) -> %
shift(a, i) shift a by i bits.
smaller?: (%, %) -> Boolean
from Comparable
subtractIfCan: (%, %) -> Union(%, failed)
from CancellationAbelianMonoid
sup: (%, %) -> %
from OrderedAbelianMonoidSup
zero?: % -> Boolean
from AbelianMonoid

AbelianMonoid

AbelianSemiGroup

BasicType

BiModule(%, %)

CancellationAbelianMonoid

CoercibleTo OutputForm

CommutativeStar

Comparable

ConvertibleTo InputForm

LeftModule %

Magma

MagmaWithUnit

Monoid

NonAssociativeSemiRing

NonAssociativeSemiRng

OrderedAbelianMonoid

OrderedAbelianMonoidSup

OrderedAbelianSemiGroup

OrderedCancellationAbelianMonoid

OrderedSet

PartialOrder

RightModule %

SemiGroup

SemiRing

SemiRng

SetCategory