RightOpenIntervalRootCharacterization(TheField, ThePolDom)ΒΆ

reclos.spad line 411

RightOpenIntervalRootCharacterization provides work with interval root coding.

=: (%, %) -> Boolean
from BasicType
~=: (%, %) -> Boolean
from BasicType
allRootsOf: ThePolDom -> List %
from RealRootCharacterizationCategory(TheField, ThePolDom)
approximate: (ThePolDom, %, TheField) -> TheField
from RealRootCharacterizationCategory(TheField, ThePolDom)
coerce: % -> OutputForm
from CoercibleTo OutputForm
definingPolynomial: % -> ThePolDom
from RealRootCharacterizationCategory(TheField, ThePolDom)
hash: % -> SingleInteger
from SetCategory
hashUpdate!: (HashState, %) -> HashState
from SetCategory
latex: % -> String
from SetCategory
left: % -> TheField
left(rootChar) is the left bound of the isolating interval
middle: % -> TheField
middle(rootChar) is the middle of the isolating interval
mightHaveRoots: (ThePolDom, %) -> Boolean
mightHaveRoots(p, r) is false if p.r is not 0
negative?: (ThePolDom, %) -> Boolean
from RealRootCharacterizationCategory(TheField, ThePolDom)
positive?: (ThePolDom, %) -> Boolean
from RealRootCharacterizationCategory(TheField, ThePolDom)
recip: (ThePolDom, %) -> Union(ThePolDom, failed)
from RealRootCharacterizationCategory(TheField, ThePolDom)
refine: % -> %
refine(rootChar) shrinks isolating interval around rootChar
relativeApprox: (ThePolDom, %, TheField) -> TheField
relativeApprox(exp, c, p) = a is relatively close to exp as a polynomial in c up to precision p
right: % -> TheField
right(rootChar) is the right bound of the isolating interval
rootOf: (ThePolDom, PositiveInteger) -> Union(%, failed)
from RealRootCharacterizationCategory(TheField, ThePolDom)
sign: (ThePolDom, %) -> Integer
from RealRootCharacterizationCategory(TheField, ThePolDom)
size: % -> TheField
The size of the isolating interval
zero?: (ThePolDom, %) -> Boolean
from RealRootCharacterizationCategory(TheField, ThePolDom)

BasicType

CoercibleTo OutputForm

RealRootCharacterizationCategory(TheField, ThePolDom)

SetCategory