HexadecimalExpansionΒΆ

radix.spad line 302

This domain allows rational numbers to be presented as repeating hexadecimal expansions.

0: %
from AbelianMonoid
1: %
from MagmaWithUnit
*: (%, %) -> %
from Magma
*: (%, Fraction Integer) -> %
from RightModule Fraction Integer
*: (%, Integer) -> %
from RightModule Integer
*: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
*: (Integer, %) -> %
from AbelianGroup
*: (NonNegativeInteger, %) -> %
from AbelianMonoid
*: (PositiveInteger, %) -> %
from AbelianSemiGroup
+: (%, %) -> %
from AbelianSemiGroup
-: % -> %
from AbelianGroup
-: (%, %) -> %
from AbelianGroup
/: (%, %) -> %
from Field
/: (Integer, Integer) -> %
from QuotientFieldCategory Integer
<: (%, %) -> Boolean
from PartialOrder
<=: (%, %) -> Boolean
from PartialOrder
=: (%, %) -> Boolean
from BasicType
>: (%, %) -> Boolean
from PartialOrder
>=: (%, %) -> Boolean
from PartialOrder
^: (%, Integer) -> %
from DivisionRing
^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
^: (%, PositiveInteger) -> %
from Magma
~=: (%, %) -> Boolean
from BasicType
abs: % -> %
from OrderedRing
annihilate?: (%, %) -> Boolean
from Rng
antiCommutator: (%, %) -> %
from NonAssociativeSemiRng
associates?: (%, %) -> Boolean
from EntireRing
associator: (%, %, %) -> %
from NonAssociativeRng
ceiling: % -> Integer
from QuotientFieldCategory Integer
characteristic: () -> NonNegativeInteger
from NonAssociativeRing
charthRoot: % -> Union(%, failed) if % has CharacteristicNonZero or Integer has CharacteristicNonZero
from PolynomialFactorizationExplicit
coerce: % -> %
from Algebra %
coerce: % -> Fraction Integer
coerce(h) converts a hexadecimal expansion to a rational number.
coerce: % -> OutputForm
from CoercibleTo OutputForm
coerce: % -> RadixExpansion 16
coerce(h) converts a hexadecimal expansion to a radix expansion with base 16.
coerce: Fraction Integer -> %
from RetractableTo Fraction Integer
coerce: Integer -> %
from Algebra Integer
coerce: Symbol -> % if Integer has RetractableTo Symbol
from RetractableTo Symbol
commutator: (%, %) -> %
from NonAssociativeRng
conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero
from PolynomialFactorizationExplicit
convert: % -> DoubleFloat
from ConvertibleTo DoubleFloat
convert: % -> Float
from ConvertibleTo Float
convert: % -> InputForm
from ConvertibleTo InputForm
convert: % -> Pattern Float if Integer has ConvertibleTo Pattern Float
from ConvertibleTo Pattern Float
convert: % -> Pattern Integer
from ConvertibleTo Pattern Integer
D: % -> %
from DifferentialRing
D: (%, Integer -> Integer) -> %
from DifferentialExtension Integer
D: (%, Integer -> Integer, NonNegativeInteger) -> %
from DifferentialExtension Integer
D: (%, List Symbol) -> % if Integer has PartialDifferentialRing Symbol
from PartialDifferentialRing Symbol
D: (%, List Symbol, List NonNegativeInteger) -> % if Integer has PartialDifferentialRing Symbol
from PartialDifferentialRing Symbol
D: (%, NonNegativeInteger) -> %
from DifferentialRing
D: (%, Symbol) -> % if Integer has PartialDifferentialRing Symbol
from PartialDifferentialRing Symbol
D: (%, Symbol, NonNegativeInteger) -> % if Integer has PartialDifferentialRing Symbol
from PartialDifferentialRing Symbol
denom: % -> Integer
from QuotientFieldCategory Integer
denominator: % -> %
from QuotientFieldCategory Integer
differentiate: % -> %
from DifferentialRing
differentiate: (%, Integer -> Integer) -> %
from DifferentialExtension Integer
differentiate: (%, Integer -> Integer, NonNegativeInteger) -> %
from DifferentialExtension Integer
differentiate: (%, List Symbol) -> % if Integer has PartialDifferentialRing Symbol
from PartialDifferentialRing Symbol
differentiate: (%, List Symbol, List NonNegativeInteger) -> % if Integer has PartialDifferentialRing Symbol
from PartialDifferentialRing Symbol
differentiate: (%, NonNegativeInteger) -> %
from DifferentialRing
differentiate: (%, Symbol) -> % if Integer has PartialDifferentialRing Symbol
from PartialDifferentialRing Symbol
differentiate: (%, Symbol, NonNegativeInteger) -> % if Integer has PartialDifferentialRing Symbol
from PartialDifferentialRing Symbol
divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
elt: (%, Integer) -> % if Integer has Eltable(Integer, Integer)
from Eltable(Integer, %)
euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
eval: (%, Equation Integer) -> % if Integer has Evalable Integer
from Evalable Integer
eval: (%, Integer, Integer) -> % if Integer has Evalable Integer
from InnerEvalable(Integer, Integer)
eval: (%, List Equation Integer) -> % if Integer has Evalable Integer
from Evalable Integer
eval: (%, List Integer, List Integer) -> % if Integer has Evalable Integer
from InnerEvalable(Integer, Integer)
eval: (%, List Symbol, List Integer) -> % if Integer has InnerEvalable(Symbol, Integer)
from InnerEvalable(Symbol, Integer)
eval: (%, Symbol, Integer) -> % if Integer has InnerEvalable(Symbol, Integer)
from InnerEvalable(Symbol, Integer)
expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
exquo: (%, %) -> Union(%, failed)
from EntireRing
extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
factor: % -> Factored %
from UniqueFactorizationDomain
factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial %
from PolynomialFactorizationExplicit
factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial %
from PolynomialFactorizationExplicit
floor: % -> Integer
from QuotientFieldCategory Integer
fractionPart: % -> %
from QuotientFieldCategory Integer
fractionPart: % -> Fraction Integer
fractionPart(h) returns the fractional part of a hexadecimal expansion.
gcd: (%, %) -> %
from GcdDomain
gcd: List % -> %
from GcdDomain
gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
from PolynomialFactorizationExplicit
hash: % -> SingleInteger
from SetCategory
hashUpdate!: (HashState, %) -> HashState
from SetCategory
hex: Fraction Integer -> %
hex(r) converts a rational number to a hexadecimal expansion.
init: %
from StepThrough
inv: % -> %
from DivisionRing
latex: % -> String
from SetCategory
lcm: (%, %) -> %
from GcdDomain
lcm: List % -> %
from GcdDomain
lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower: (%, PositiveInteger) -> %
from Magma
leftRecip: % -> Union(%, failed)
from MagmaWithUnit
map: (Integer -> Integer, %) -> %
from FullyEvalableOver Integer
max: (%, %) -> %
from OrderedSet
min: (%, %) -> %
from OrderedSet
multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
negative?: % -> Boolean
from OrderedRing
nextItem: % -> Union(%, failed)
from StepThrough
numer: % -> Integer
from QuotientFieldCategory Integer
numerator: % -> %
from QuotientFieldCategory Integer
one?: % -> Boolean
from MagmaWithUnit
opposite?: (%, %) -> Boolean
from AbelianMonoid
patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if Integer has PatternMatchable Float
from PatternMatchable Float
patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %)
from PatternMatchable Integer
positive?: % -> Boolean
from OrderedRing
prime?: % -> Boolean
from UniqueFactorizationDomain
principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
quo: (%, %) -> %
from EuclideanDomain
recip: % -> Union(%, failed)
from MagmaWithUnit
reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer)
from LinearlyExplicitOver Integer
reducedSystem: Matrix % -> Matrix Integer
from LinearlyExplicitOver Integer
rem: (%, %) -> %
from EuclideanDomain
retract: % -> Fraction Integer
from RetractableTo Fraction Integer
retract: % -> Integer
from RetractableTo Integer
retract: % -> Symbol if Integer has RetractableTo Symbol
from RetractableTo Symbol
retractIfCan: % -> Union(Fraction Integer, failed)
from RetractableTo Fraction Integer
retractIfCan: % -> Union(Integer, failed)
from RetractableTo Integer
retractIfCan: % -> Union(Symbol, failed) if Integer has RetractableTo Symbol
from RetractableTo Symbol
rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower: (%, PositiveInteger) -> %
from Magma
rightRecip: % -> Union(%, failed)
from MagmaWithUnit
sample: %
from AbelianMonoid
sign: % -> Integer
from OrderedRing
sizeLess?: (%, %) -> Boolean
from EuclideanDomain
smaller?: (%, %) -> Boolean
from Comparable
solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed)
from PolynomialFactorizationExplicit
squareFree: % -> Factored %
from UniqueFactorizationDomain
squareFreePart: % -> %
from UniqueFactorizationDomain
squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial %
from PolynomialFactorizationExplicit
subtractIfCan: (%, %) -> Union(%, failed)
from CancellationAbelianMonoid
unit?: % -> Boolean
from EntireRing
unitCanonical: % -> %
from EntireRing
unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
wholePart: % -> Integer
from QuotientFieldCategory Integer
zero?: % -> Boolean
from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianSemiGroup

Algebra %

Algebra Fraction Integer

Algebra Integer

BasicType

BiModule(%, %)

BiModule(Fraction Integer, Fraction Integer)

BiModule(Integer, Integer)

CancellationAbelianMonoid

canonicalsClosed

canonicalUnitNormal

CharacteristicNonZero if Integer has CharacteristicNonZero

CharacteristicZero

CoercibleTo OutputForm

CommutativeRing

CommutativeStar

Comparable

ConvertibleTo DoubleFloat

ConvertibleTo Float

ConvertibleTo InputForm

ConvertibleTo Pattern Float if Integer has ConvertibleTo Pattern Float

ConvertibleTo Pattern Integer

DifferentialExtension Integer

DifferentialRing

DivisionRing

Eltable(Integer, %) if Integer has Eltable(Integer, Integer)

EntireRing

EuclideanDomain

Evalable Integer if Integer has Evalable Integer

Field

FullyEvalableOver Integer

FullyLinearlyExplicitOver Integer

FullyPatternMatchable Integer

GcdDomain

InnerEvalable(Integer, Integer) if Integer has Evalable Integer

InnerEvalable(Symbol, Integer) if Integer has InnerEvalable(Symbol, Integer)

IntegralDomain

LeftModule %

LeftModule Fraction Integer

LeftModule Integer

LeftOreRing

LinearlyExplicitOver Integer

Magma

MagmaWithUnit

Module %

Module Fraction Integer

Module Integer

Monoid

NonAssociativeRing

NonAssociativeRng

NonAssociativeSemiRing

NonAssociativeSemiRng

noZeroDivisors

OrderedAbelianGroup

OrderedAbelianMonoid

OrderedAbelianSemiGroup

OrderedCancellationAbelianMonoid

OrderedIntegralDomain

OrderedRing

OrderedSet

PartialDifferentialRing Symbol if Integer has PartialDifferentialRing Symbol

PartialOrder

Patternable Integer

PatternMatchable Float if Integer has PatternMatchable Float

PatternMatchable Integer

PolynomialFactorizationExplicit

PrincipalIdealDomain

QuotientFieldCategory Integer

RealConstant

RetractableTo Fraction Integer

RetractableTo Integer

RetractableTo Symbol if Integer has RetractableTo Symbol

RightModule %

RightModule Fraction Integer

RightModule Integer

Ring

Rng

SemiGroup

SemiRing

SemiRng

SetCategory

StepThrough

UniqueFactorizationDomain

unitsKnown