DivisionRingΒΆ
catdef.spad line 312 [edit on github]
A division ring (sometimes called a skew field), i.e. a not necessarily commutative ring where all non-zero elements have multiplicative inverses.
- 0: %
 from AbelianMonoid
- 1: %
 from MagmaWithUnit
- *: (%, %) -> %
 from Magma
- *: (%, Fraction Integer) -> %
 from RightModule Fraction Integer
- *: (Fraction Integer, %) -> %
 from LeftModule Fraction Integer
- *: (Integer, %) -> %
 from AbelianGroup
- *: (NonNegativeInteger, %) -> %
 from AbelianMonoid
- *: (PositiveInteger, %) -> %
 from AbelianSemiGroup
- +: (%, %) -> %
 from AbelianSemiGroup
- -: % -> %
 from AbelianGroup
- -: (%, %) -> %
 from AbelianGroup
- ^: (%, Integer) -> %
 x^nreturnsxraised to the integer powern.- ^: (%, NonNegativeInteger) -> %
 from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
 from Magma
- annihilate?: (%, %) -> Boolean
 from Rng
- antiCommutator: (%, %) -> %
 
- associates?: (%, %) -> Boolean
 from EntireRing
- associator: (%, %, %) -> %
 from NonAssociativeRng
- characteristic: () -> NonNegativeInteger
 from NonAssociativeRing
- coerce: % -> OutputForm
 from CoercibleTo OutputForm
- coerce: Fraction Integer -> %
 - coerce: Integer -> %
 from NonAssociativeRing
- commutator: (%, %) -> %
 from NonAssociativeRng
- exquo: (%, %) -> Union(%, failed)
 from EntireRing
- inv: % -> %
 inv xreturns the multiplicative inverse ofx. Error: ifxis 0.
- latex: % -> String
 from SetCategory
- leftPower: (%, NonNegativeInteger) -> %
 from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
 from Magma
- leftRecip: % -> Union(%, failed)
 from MagmaWithUnit
- one?: % -> Boolean
 from MagmaWithUnit
- opposite?: (%, %) -> Boolean
 from AbelianMonoid
- plenaryPower: (%, PositiveInteger) -> %
 
- recip: % -> Union(%, failed)
 from MagmaWithUnit
- rightPower: (%, NonNegativeInteger) -> %
 from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
 from Magma
- rightRecip: % -> Union(%, failed)
 from MagmaWithUnit
- sample: %
 from AbelianMonoid
- subtractIfCan: (%, %) -> Union(%, failed)
 
- unit?: % -> Boolean
 from EntireRing
- unitCanonical: % -> %
 from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
 from EntireRing
- zero?: % -> Boolean
 from AbelianMonoid
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)