DivisionRingΒΆ

catdef.spad line 312

A division ring (sometimes called a skew field), i.e. a not necessarily commutative ring where all non-zero elements have multiplicative inverses.

0: %
from AbelianMonoid
1: %
from MagmaWithUnit
*: (%, %) -> %
from Magma
*: (%, Fraction Integer) -> %
from RightModule Fraction Integer
*: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
*: (Integer, %) -> %
from AbelianGroup
*: (NonNegativeInteger, %) -> %
from AbelianMonoid
*: (PositiveInteger, %) -> %
from AbelianSemiGroup
+: (%, %) -> %
from AbelianSemiGroup
-: % -> %
from AbelianGroup
-: (%, %) -> %
from AbelianGroup
=: (%, %) -> Boolean
from BasicType
^: (%, Integer) -> %
x^n returns x raised to the integer power n.
^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
^: (%, PositiveInteger) -> %
from Magma
~=: (%, %) -> Boolean
from BasicType
annihilate?: (%, %) -> Boolean
from Rng
antiCommutator: (%, %) -> %
from NonAssociativeSemiRng
associates?: (%, %) -> Boolean
from EntireRing
associator: (%, %, %) -> %
from NonAssociativeRng
characteristic: () -> NonNegativeInteger
from NonAssociativeRing
coerce: % -> OutputForm
from CoercibleTo OutputForm
coerce: Fraction Integer -> %
from Algebra Fraction Integer
coerce: Integer -> %
from NonAssociativeRing
commutator: (%, %) -> %
from NonAssociativeRng
exquo: (%, %) -> Union(%, failed)
from EntireRing
hash: % -> SingleInteger
from SetCategory
hashUpdate!: (HashState, %) -> HashState
from SetCategory
inv: % -> %
inv x returns the multiplicative inverse of x. Error: if x is 0.
latex: % -> String
from SetCategory
leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower: (%, PositiveInteger) -> %
from Magma
leftRecip: % -> Union(%, failed)
from MagmaWithUnit
one?: % -> Boolean
from MagmaWithUnit
opposite?: (%, %) -> Boolean
from AbelianMonoid
recip: % -> Union(%, failed)
from MagmaWithUnit
rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower: (%, PositiveInteger) -> %
from Magma
rightRecip: % -> Union(%, failed)
from MagmaWithUnit
sample: %
from AbelianMonoid
subtractIfCan: (%, %) -> Union(%, failed)
from CancellationAbelianMonoid
unit?: % -> Boolean
from EntireRing
unitCanonical: % -> %
from EntireRing
unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
zero?: % -> Boolean
from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianSemiGroup

Algebra Fraction Integer

BasicType

BiModule(%, %)

BiModule(Fraction Integer, Fraction Integer)

CancellationAbelianMonoid

CoercibleTo OutputForm

EntireRing

LeftModule %

LeftModule Fraction Integer

Magma

MagmaWithUnit

Module Fraction Integer

Monoid

NonAssociativeRing

NonAssociativeRng

NonAssociativeSemiRing

NonAssociativeSemiRng

noZeroDivisors

RightModule %

RightModule Fraction Integer

Ring

Rng

SemiGroup

SemiRing

SemiRng

SetCategory

unitsKnown