ExponentialExpansion(R, FE, var, cen)ΒΆ

expexpan.spad line 347

UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums, where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.

0: %
from AbelianMonoid
1: %
from MagmaWithUnit
*: (%, %) -> %
from Magma
*: (%, Fraction Integer) -> %
from RightModule Fraction Integer
*: (%, UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)) -> %
from RightModule UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
*: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
*: (Integer, %) -> %
from AbelianGroup
*: (NonNegativeInteger, %) -> %
from AbelianMonoid
*: (PositiveInteger, %) -> %
from AbelianSemiGroup
*: (UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen), %) -> %
from LeftModule UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
+: (%, %) -> %
from AbelianSemiGroup
-: % -> %
from AbelianGroup
-: (%, %) -> %
from AbelianGroup
/: (%, %) -> %
from Field
/: (UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen), UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)) -> %
from QuotientFieldCategory UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
<: (%, %) -> Boolean if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has OrderedSet
from PartialOrder
<=: (%, %) -> Boolean if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has OrderedSet
from PartialOrder
=: (%, %) -> Boolean
from BasicType
>: (%, %) -> Boolean if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has OrderedSet
from PartialOrder
>=: (%, %) -> Boolean if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has OrderedSet
from PartialOrder
^: (%, Integer) -> %
from DivisionRing
^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
^: (%, PositiveInteger) -> %
from Magma
~=: (%, %) -> Boolean
from BasicType
abs: % -> % if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has OrderedIntegralDomain
from OrderedRing
annihilate?: (%, %) -> Boolean
from Rng
antiCommutator: (%, %) -> %
from NonAssociativeSemiRng
associates?: (%, %) -> Boolean
from EntireRing
associator: (%, %, %) -> %
from NonAssociativeRng
ceiling: % -> UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has IntegerNumberSystem
from QuotientFieldCategory UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
characteristic: () -> NonNegativeInteger
from NonAssociativeRing
charthRoot: % -> Union(%, failed) if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has CharacteristicNonZero
from CharacteristicNonZero
coerce: % -> %
from Algebra %
coerce: % -> OutputForm
from CoercibleTo OutputForm
coerce: Fraction Integer -> %
from RetractableTo Fraction Integer
coerce: Integer -> %
from NonAssociativeRing
coerce: Symbol -> % if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has RetractableTo Symbol
from RetractableTo Symbol
coerce: UnivariatePuiseuxSeries(FE, var, cen) -> %
coerce(f) converts a UnivariatePuiseuxSeries to an ExponentialExpansion.
coerce: UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) -> %
from RetractableTo UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
commutator: (%, %) -> %
from NonAssociativeRng
convert: % -> DoubleFloat if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has RealConstant
from ConvertibleTo DoubleFloat
convert: % -> Float if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has RealConstant
from ConvertibleTo Float
convert: % -> InputForm if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has ConvertibleTo InputForm
from ConvertibleTo InputForm
convert: % -> Pattern Float if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has ConvertibleTo Pattern Float
from ConvertibleTo Pattern Float
convert: % -> Pattern Integer if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has ConvertibleTo Pattern Integer
from ConvertibleTo Pattern Integer
D: % -> % if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has DifferentialRing
from DifferentialRing
D: (%, List Symbol) -> % if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has PartialDifferentialRing Symbol
from PartialDifferentialRing Symbol
D: (%, List Symbol, List NonNegativeInteger) -> % if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has PartialDifferentialRing Symbol
from PartialDifferentialRing Symbol
D: (%, NonNegativeInteger) -> % if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has DifferentialRing
from DifferentialRing
D: (%, Symbol) -> % if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has PartialDifferentialRing Symbol
from PartialDifferentialRing Symbol
D: (%, Symbol, NonNegativeInteger) -> % if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has PartialDifferentialRing Symbol
from PartialDifferentialRing Symbol
D: (%, UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) -> UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)) -> %
from DifferentialExtension UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
D: (%, UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) -> UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen), NonNegativeInteger) -> %
from DifferentialExtension UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
denom: % -> UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
from QuotientFieldCategory UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
denominator: % -> %
from QuotientFieldCategory UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
differentiate: % -> % if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has DifferentialRing
from DifferentialRing
differentiate: (%, List Symbol) -> % if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has PartialDifferentialRing Symbol
from PartialDifferentialRing Symbol
differentiate: (%, List Symbol, List NonNegativeInteger) -> % if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has PartialDifferentialRing Symbol
from PartialDifferentialRing Symbol
differentiate: (%, NonNegativeInteger) -> % if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has DifferentialRing
from DifferentialRing
differentiate: (%, Symbol) -> % if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has PartialDifferentialRing Symbol
from PartialDifferentialRing Symbol
differentiate: (%, Symbol, NonNegativeInteger) -> % if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has PartialDifferentialRing Symbol
from PartialDifferentialRing Symbol
differentiate: (%, UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) -> UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)) -> %
from DifferentialExtension UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
differentiate: (%, UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) -> UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen), NonNegativeInteger) -> %
from DifferentialExtension UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
elt: (%, UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)) -> % if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has Eltable(UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen), UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen))
from Eltable(UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen), %)
euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
eval: (%, Equation UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)) -> % if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has Evalable UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
from Evalable UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
eval: (%, List Equation UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)) -> % if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has Evalable UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
from Evalable UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
eval: (%, List Symbol, List UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)) -> % if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has InnerEvalable(Symbol, UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen))
from InnerEvalable(Symbol, UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen))
eval: (%, List UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen), List UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)) -> % if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has Evalable UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
from InnerEvalable(UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen), UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen))
eval: (%, Symbol, UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)) -> % if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has InnerEvalable(Symbol, UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen))
from InnerEvalable(Symbol, UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen))
eval: (%, UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen), UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)) -> % if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has Evalable UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
from InnerEvalable(UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen), UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen))
expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
exquo: (%, %) -> Union(%, failed)
from EntireRing
extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
factor: % -> Factored %
from UniqueFactorizationDomain
factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
floor: % -> UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has IntegerNumberSystem
from QuotientFieldCategory UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
fractionPart: % -> % if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has EuclideanDomain
from QuotientFieldCategory UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
gcd: (%, %) -> %
from GcdDomain
gcd: List % -> %
from GcdDomain
gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
from PolynomialFactorizationExplicit
hash: % -> SingleInteger
from SetCategory
hashUpdate!: (HashState, %) -> HashState
from SetCategory
init: % if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has StepThrough
from StepThrough
inv: % -> %
from DivisionRing
latex: % -> String
from SetCategory
lcm: (%, %) -> %
from GcdDomain
lcm: List % -> %
from GcdDomain
lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower: (%, PositiveInteger) -> %
from Magma
leftRecip: % -> Union(%, failed)
from MagmaWithUnit
limitPlus: % -> Union(OrderedCompletion FE, failed)
limitPlus(f(var)) returns limit(var -> a+, f(var)).
map: (UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) -> UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen), %) -> %
from FullyEvalableOver UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
max: (%, %) -> % if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has OrderedSet
from OrderedSet
min: (%, %) -> % if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has OrderedSet
from OrderedSet
multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
negative?: % -> Boolean if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has OrderedIntegralDomain
from OrderedRing
nextItem: % -> Union(%, failed) if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has StepThrough
from StepThrough
numer: % -> UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
from QuotientFieldCategory UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
numerator: % -> %
from QuotientFieldCategory UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
one?: % -> Boolean
from MagmaWithUnit
opposite?: (%, %) -> Boolean
from AbelianMonoid
patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has PatternMatchable Float
from PatternMatchable Float
patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has PatternMatchable Integer
from PatternMatchable Integer
positive?: % -> Boolean if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has OrderedIntegralDomain
from OrderedRing
prime?: % -> Boolean
from UniqueFactorizationDomain
principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
quo: (%, %) -> %
from EuclideanDomain
recip: % -> Union(%, failed)
from MagmaWithUnit
reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has LinearlyExplicitOver Integer
from LinearlyExplicitOver Integer
reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen), vec: Vector UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen))
from LinearlyExplicitOver UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
reducedSystem: Matrix % -> Matrix Integer if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has LinearlyExplicitOver Integer
from LinearlyExplicitOver Integer
reducedSystem: Matrix % -> Matrix UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
from LinearlyExplicitOver UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
rem: (%, %) -> %
from EuclideanDomain
retract: % -> Fraction Integer if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has RetractableTo Integer
from RetractableTo Fraction Integer
retract: % -> Integer if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has RetractableTo Integer
from RetractableTo Integer
retract: % -> Symbol if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has RetractableTo Symbol
from RetractableTo Symbol
retract: % -> UnivariatePuiseuxSeries(FE, var, cen)
from RetractableTo UnivariatePuiseuxSeries(FE, var, cen)
retract: % -> UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
from RetractableTo UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
retractIfCan: % -> Union(Fraction Integer, failed) if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has RetractableTo Integer
from RetractableTo Fraction Integer
retractIfCan: % -> Union(Integer, failed) if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has RetractableTo Integer
from RetractableTo Integer
retractIfCan: % -> Union(Symbol, failed) if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has RetractableTo Symbol
from RetractableTo Symbol
retractIfCan: % -> Union(UnivariatePuiseuxSeries(FE, var, cen), failed)
from RetractableTo UnivariatePuiseuxSeries(FE, var, cen)
retractIfCan: % -> Union(UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen), failed)
from RetractableTo UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower: (%, PositiveInteger) -> %
from Magma
rightRecip: % -> Union(%, failed)
from MagmaWithUnit
sample: %
from AbelianMonoid
sign: % -> Integer if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has OrderedIntegralDomain
from OrderedRing
sizeLess?: (%, %) -> Boolean
from EuclideanDomain
smaller?: (%, %) -> Boolean if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has Comparable
from Comparable
solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
squareFree: % -> Factored %
from UniqueFactorizationDomain
squareFreePart: % -> %
from UniqueFactorizationDomain
squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
subtractIfCan: (%, %) -> Union(%, failed)
from CancellationAbelianMonoid
unit?: % -> Boolean
from EntireRing
unitCanonical: % -> %
from EntireRing
unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
wholePart: % -> UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has EuclideanDomain
from QuotientFieldCategory UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)
zero?: % -> Boolean
from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianSemiGroup

Algebra %

Algebra Fraction Integer

Algebra UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)

BasicType

BiModule(%, %)

BiModule(Fraction Integer, Fraction Integer)

BiModule(UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen), UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen))

CancellationAbelianMonoid

canonicalsClosed

canonicalUnitNormal

CharacteristicNonZero if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has CharacteristicNonZero

CharacteristicZero if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has CharacteristicZero

CoercibleTo OutputForm

CommutativeRing

CommutativeStar

Comparable if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has Comparable

ConvertibleTo DoubleFloat if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has RealConstant

ConvertibleTo Float if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has RealConstant

ConvertibleTo InputForm if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has ConvertibleTo InputForm

ConvertibleTo Pattern Float if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has ConvertibleTo Pattern Float

ConvertibleTo Pattern Integer if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has ConvertibleTo Pattern Integer

DifferentialExtension UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)

DifferentialRing if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has DifferentialRing

DivisionRing

Eltable(UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen), %) if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has Eltable(UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen), UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen))

EntireRing

EuclideanDomain

Evalable UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has Evalable UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)

Field

FullyEvalableOver UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)

FullyLinearlyExplicitOver UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)

FullyPatternMatchable UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)

GcdDomain

InnerEvalable(Symbol, UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)) if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has InnerEvalable(Symbol, UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen))

InnerEvalable(UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen), UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)) if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has Evalable UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)

IntegralDomain

LeftModule %

LeftModule Fraction Integer

LeftModule UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)

LeftOreRing

LinearlyExplicitOver Integer if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has LinearlyExplicitOver Integer

LinearlyExplicitOver UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)

Magma

MagmaWithUnit

Module %

Module Fraction Integer

Module UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)

Monoid

NonAssociativeRing

NonAssociativeRng

NonAssociativeSemiRing

NonAssociativeSemiRng

noZeroDivisors

OrderedAbelianGroup if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has OrderedIntegralDomain

OrderedAbelianMonoid if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has OrderedIntegralDomain

OrderedAbelianSemiGroup if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has OrderedIntegralDomain

OrderedCancellationAbelianMonoid if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has OrderedIntegralDomain

OrderedIntegralDomain if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has OrderedIntegralDomain

OrderedRing if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has OrderedIntegralDomain

OrderedSet if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has OrderedSet

PartialDifferentialRing Symbol if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has PartialDifferentialRing Symbol

PartialOrder if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has OrderedSet

Patternable UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)

PatternMatchable Float if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has PatternMatchable Float

PatternMatchable Integer if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has PatternMatchable Integer

PolynomialFactorizationExplicit if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has PolynomialFactorizationExplicit

PrincipalIdealDomain

QuotientFieldCategory UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)

RealConstant if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has RealConstant

RetractableTo Fraction Integer if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has RetractableTo Integer

RetractableTo Integer if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has RetractableTo Integer

RetractableTo Symbol if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has RetractableTo Symbol

RetractableTo UnivariatePuiseuxSeries(FE, var, cen)

RetractableTo UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)

RightModule %

RightModule Fraction Integer

RightModule UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen)

Ring

Rng

SemiGroup

SemiRing

SemiRng

SetCategory

StepThrough if UnivariatePuiseuxSeriesWithExponentialSingularity(R, FE, var, cen) has StepThrough

UniqueFactorizationDomain

unitsKnown