DistributedMultivariatePolynomial(vl, R)ΒΆ
gdpoly.spad line 258 [edit on github]
This type supports distributed multivariate polynomials whose variables are from a user specified list of symbols. The coefficient ring may be non commutative, but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.
- 0: %
- from AbelianMonoid 
- 1: %
- from MagmaWithUnit 
- *: (%, %) -> %
- from Magma 
- *: (%, Fraction Integer) -> % if R has Algebra Fraction Integer
- from RightModule Fraction Integer 
- *: (%, Integer) -> % if R has LinearlyExplicitOver Integer
- from RightModule Integer 
- *: (%, R) -> %
- from RightModule R 
- *: (Fraction Integer, %) -> % if R has Algebra Fraction Integer
- from LeftModule Fraction Integer 
- *: (Integer, %) -> %
- from AbelianGroup 
- *: (NonNegativeInteger, %) -> %
- from AbelianMonoid 
- *: (PositiveInteger, %) -> %
- from AbelianSemiGroup 
- *: (R, %) -> %
- from LeftModule R 
- +: (%, %) -> %
- from AbelianSemiGroup 
- -: % -> %
- from AbelianGroup 
- -: (%, %) -> %
- from AbelianGroup 
- /: (%, R) -> % if R has Field
- from AbelianMonoidRing(R, DirectProduct(# vl, NonNegativeInteger)) 
- ^: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- ^: (%, PositiveInteger) -> %
- from Magma 
- annihilate?: (%, %) -> Boolean
- from Rng 
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean if R has EntireRing
- from EntireRing 
- associator: (%, %, %) -> %
- from NonAssociativeRng 
- binomThmExpt: (%, %, NonNegativeInteger) -> % if % has CommutativeRing
- from FiniteAbelianMonoidRing(R, DirectProduct(# vl, NonNegativeInteger)) 
- characteristic: () -> NonNegativeInteger
- from NonAssociativeRing 
- charthRoot: % -> Union(%, failed) if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit or R has CharacteristicNonZero
- coefficient: (%, DirectProduct(# vl, NonNegativeInteger)) -> R
- from AbelianMonoidRing(R, DirectProduct(# vl, NonNegativeInteger)) 
- coefficient: (%, List OrderedVariableList vl, List NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- coefficient: (%, OrderedVariableList vl, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- coefficients: % -> List R
- from FreeModuleCategory(R, DirectProduct(# vl, NonNegativeInteger)) 
- coerce: % -> % if R has CommutativeRing
- from Algebra % 
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- coerce: Fraction Integer -> % if R has Algebra Fraction Integer or R has RetractableTo Fraction Integer
- coerce: Integer -> %
- from NonAssociativeRing 
- coerce: OrderedVariableList vl -> %
- from CoercibleFrom OrderedVariableList vl 
- coerce: R -> %
- from Algebra R 
- commutator: (%, %) -> %
- from NonAssociativeRng 
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- construct: List Record(k: DirectProduct(# vl, NonNegativeInteger), c: R) -> %
- from IndexedProductCategory(R, DirectProduct(# vl, NonNegativeInteger)) 
- constructOrdered: List Record(k: DirectProduct(# vl, NonNegativeInteger), c: R) -> %
- from IndexedProductCategory(R, DirectProduct(# vl, NonNegativeInteger)) 
- content: % -> R if R has GcdDomain
- from FiniteAbelianMonoidRing(R, DirectProduct(# vl, NonNegativeInteger)) 
- content: (%, OrderedVariableList vl) -> % if R has GcdDomain
- from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- convert: % -> InputForm if R has ConvertibleTo InputForm
- from ConvertibleTo InputForm 
- convert: % -> Pattern Float if R has ConvertibleTo Pattern Float
- from ConvertibleTo Pattern Float 
- convert: % -> Pattern Integer if R has ConvertibleTo Pattern Integer
- from ConvertibleTo Pattern Integer 
- D: (%, List OrderedVariableList vl) -> %
- D: (%, List OrderedVariableList vl, List NonNegativeInteger) -> %
- D: (%, OrderedVariableList vl) -> %
- D: (%, OrderedVariableList vl, NonNegativeInteger) -> %
- degree: % -> DirectProduct(# vl, NonNegativeInteger)
- from AbelianMonoidRing(R, DirectProduct(# vl, NonNegativeInteger)) 
- degree: (%, List OrderedVariableList vl) -> List NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- degree: (%, OrderedVariableList vl) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- differentiate: (%, List OrderedVariableList vl) -> %
- differentiate: (%, List OrderedVariableList vl, List NonNegativeInteger) -> %
- differentiate: (%, OrderedVariableList vl) -> %
- differentiate: (%, OrderedVariableList vl, NonNegativeInteger) -> %
- discriminant: (%, OrderedVariableList vl) -> % if R has CommutativeRing
- from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- eval: (%, %, %) -> %
- from InnerEvalable(%, %) 
- eval: (%, Equation %) -> %
- from Evalable % 
- eval: (%, List %, List %) -> %
- from InnerEvalable(%, %) 
- eval: (%, List Equation %) -> %
- from Evalable % 
- eval: (%, List OrderedVariableList vl, List %) -> %
- from InnerEvalable(OrderedVariableList vl, %) 
- eval: (%, List OrderedVariableList vl, List R) -> %
- from InnerEvalable(OrderedVariableList vl, R) 
- eval: (%, OrderedVariableList vl, %) -> %
- from InnerEvalable(OrderedVariableList vl, %) 
- eval: (%, OrderedVariableList vl, R) -> %
- from InnerEvalable(OrderedVariableList vl, R) 
- exquo: (%, %) -> Union(%, failed) if R has EntireRing
- from EntireRing 
- exquo: (%, R) -> Union(%, failed) if R has EntireRing
- from FiniteAbelianMonoidRing(R, DirectProduct(# vl, NonNegativeInteger)) 
- factor: % -> Factored % if R has PolynomialFactorizationExplicit
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- fmecg: (%, DirectProduct(# vl, NonNegativeInteger), R, %) -> %
- from FiniteAbelianMonoidRing(R, DirectProduct(# vl, NonNegativeInteger)) 
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if R has GcdDomain
- ground?: % -> Boolean
- from FiniteAbelianMonoidRing(R, DirectProduct(# vl, NonNegativeInteger)) 
- ground: % -> R
- from FiniteAbelianMonoidRing(R, DirectProduct(# vl, NonNegativeInteger)) 
- hash: % -> SingleInteger if R has Hashable
- from Hashable 
- hashUpdate!: (HashState, %) -> HashState if R has Hashable
- from Hashable 
- isExpt: % -> Union(Record(var: OrderedVariableList vl, exponent: NonNegativeInteger), failed)
- from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- isPlus: % -> Union(List %, failed)
- from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- isTimes: % -> Union(List %, failed)
- from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- latex: % -> String
- from SetCategory 
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if R has GcdDomain
- from LeftOreRing 
- leadingCoefficient: % -> R
- from IndexedProductCategory(R, DirectProduct(# vl, NonNegativeInteger)) 
- leadingMonomial: % -> %
- from IndexedProductCategory(R, DirectProduct(# vl, NonNegativeInteger)) 
- leadingSupport: % -> DirectProduct(# vl, NonNegativeInteger)
- from IndexedProductCategory(R, DirectProduct(# vl, NonNegativeInteger)) 
- leadingTerm: % -> Record(k: DirectProduct(# vl, NonNegativeInteger), c: R)
- from IndexedProductCategory(R, DirectProduct(# vl, NonNegativeInteger)) 
- leftPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- leftPower: (%, PositiveInteger) -> %
- from Magma 
- leftRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- linearExtend: (DirectProduct(# vl, NonNegativeInteger) -> R, %) -> R if R has CommutativeRing
- from FreeModuleCategory(R, DirectProduct(# vl, NonNegativeInteger)) 
- listOfTerms: % -> List Record(k: DirectProduct(# vl, NonNegativeInteger), c: R)
- from IndexedDirectProductCategory(R, DirectProduct(# vl, NonNegativeInteger)) 
- mainVariable: % -> Union(OrderedVariableList vl, failed)
- from MaybeSkewPolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- map: (R -> R, %) -> %
- from IndexedProductCategory(R, DirectProduct(# vl, NonNegativeInteger)) 
- mapExponents: (DirectProduct(# vl, NonNegativeInteger) -> DirectProduct(# vl, NonNegativeInteger), %) -> %
- from FiniteAbelianMonoidRing(R, DirectProduct(# vl, NonNegativeInteger)) 
- minimumDegree: % -> DirectProduct(# vl, NonNegativeInteger)
- from FiniteAbelianMonoidRing(R, DirectProduct(# vl, NonNegativeInteger)) 
- minimumDegree: (%, List OrderedVariableList vl) -> List NonNegativeInteger
- from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- minimumDegree: (%, OrderedVariableList vl) -> NonNegativeInteger
- from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- monicDivide: (%, %, OrderedVariableList vl) -> Record(quotient: %, remainder: %)
- from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- monomial?: % -> Boolean
- from IndexedProductCategory(R, DirectProduct(# vl, NonNegativeInteger)) 
- monomial: (%, List OrderedVariableList vl, List NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- monomial: (%, OrderedVariableList vl, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- monomial: (R, DirectProduct(# vl, NonNegativeInteger)) -> %
- from IndexedProductCategory(R, DirectProduct(# vl, NonNegativeInteger)) 
- monomials: % -> List %
- from MaybeSkewPolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- multivariate: (SparseUnivariatePolynomial %, OrderedVariableList vl) -> %
- from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- multivariate: (SparseUnivariatePolynomial R, OrderedVariableList vl) -> %
- from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- numberOfMonomials: % -> NonNegativeInteger
- from IndexedDirectProductCategory(R, DirectProduct(# vl, NonNegativeInteger)) 
- one?: % -> Boolean
- from MagmaWithUnit 
- opposite?: (%, %) -> Boolean
- from AbelianMonoid 
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if OrderedVariableList vl has PatternMatchable Float and R has PatternMatchable Float
- from PatternMatchable Float 
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if OrderedVariableList vl has PatternMatchable Integer and R has PatternMatchable Integer
- from PatternMatchable Integer 
- plenaryPower: (%, PositiveInteger) -> % if R has CommutativeRing or R has Algebra Fraction Integer
- from NonAssociativeAlgebra % 
- pomopo!: (%, R, DirectProduct(# vl, NonNegativeInteger), %) -> %
- from FiniteAbelianMonoidRing(R, DirectProduct(# vl, NonNegativeInteger)) 
- prime?: % -> Boolean if R has PolynomialFactorizationExplicit
- primitiveMonomials: % -> List %
- from MaybeSkewPolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- primitivePart: % -> % if R has GcdDomain
- from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- primitivePart: (%, OrderedVariableList vl) -> % if R has GcdDomain
- from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- recip: % -> Union(%, failed)
- from MagmaWithUnit 
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if R has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix R, vec: Vector R)
- from LinearlyExplicitOver R 
- reducedSystem: Matrix % -> Matrix Integer if R has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix R
- from LinearlyExplicitOver R 
- reductum: % -> %
- from IndexedProductCategory(R, DirectProduct(# vl, NonNegativeInteger)) 
- reorder: (%, List Integer) -> %
- reorder(p, perm)applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial
- resultant: (%, %, OrderedVariableList vl) -> % if R has CommutativeRing
- from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- retract: % -> Fraction Integer if R has RetractableTo Fraction Integer
- from RetractableTo Fraction Integer 
- retract: % -> Integer if R has RetractableTo Integer
- from RetractableTo Integer 
- retract: % -> OrderedVariableList vl
- from RetractableTo OrderedVariableList vl 
- retract: % -> R
- from RetractableTo R 
- retractIfCan: % -> Union(Fraction Integer, failed) if R has RetractableTo Fraction Integer
- from RetractableTo Fraction Integer 
- retractIfCan: % -> Union(Integer, failed) if R has RetractableTo Integer
- from RetractableTo Integer 
- retractIfCan: % -> Union(OrderedVariableList vl, failed)
- from RetractableTo OrderedVariableList vl 
- retractIfCan: % -> Union(R, failed)
- from RetractableTo R 
- rightPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- rightPower: (%, PositiveInteger) -> %
- from Magma 
- rightRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- sample: %
- from AbelianMonoid 
- smaller?: (%, %) -> Boolean if R has Comparable
- from Comparable 
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if R has PolynomialFactorizationExplicit
- squareFree: % -> Factored % if R has GcdDomain
- from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- squareFreePart: % -> % if R has GcdDomain
- from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- subtractIfCan: (%, %) -> Union(%, failed)
- support: % -> List DirectProduct(# vl, NonNegativeInteger)
- from FreeModuleCategory(R, DirectProduct(# vl, NonNegativeInteger)) 
- totalDegree: % -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- totalDegree: (%, List OrderedVariableList vl) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- totalDegreeSorted: (%, List OrderedVariableList vl) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- unit?: % -> Boolean if R has EntireRing
- from EntireRing 
- unitCanonical: % -> % if R has EntireRing
- from EntireRing 
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if R has EntireRing
- from EntireRing 
- univariate: % -> SparseUnivariatePolynomial R
- from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- univariate: (%, OrderedVariableList vl) -> SparseUnivariatePolynomial %
- from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- variables: % -> List OrderedVariableList vl
- from MaybeSkewPolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl) 
- zero?: % -> Boolean
- from AbelianMonoid 
AbelianMonoidRing(R, DirectProduct(# vl, NonNegativeInteger))
Algebra % if R has CommutativeRing
Algebra Fraction Integer if R has Algebra Fraction Integer
Algebra R if R has CommutativeRing
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer) if R has Algebra Fraction Integer
BiModule(R, R)
canonicalUnitNormal if R has canonicalUnitNormal
CharacteristicNonZero if R has CharacteristicNonZero
CharacteristicZero if R has CharacteristicZero
CoercibleFrom Fraction Integer if R has RetractableTo Fraction Integer
CoercibleFrom Integer if R has RetractableTo Integer
CoercibleFrom OrderedVariableList vl
CommutativeRing if R has CommutativeRing
CommutativeStar if R has CommutativeRing
Comparable if R has Comparable
ConvertibleTo InputForm if R has ConvertibleTo InputForm
ConvertibleTo Pattern Float if R has ConvertibleTo Pattern Float
ConvertibleTo Pattern Integer if R has ConvertibleTo Pattern Integer
EntireRing if R has EntireRing
Evalable %
FiniteAbelianMonoidRing(R, DirectProduct(# vl, NonNegativeInteger))
FreeModuleCategory(R, DirectProduct(# vl, NonNegativeInteger))
IndexedDirectProductCategory(R, DirectProduct(# vl, NonNegativeInteger))
IndexedProductCategory(R, DirectProduct(# vl, NonNegativeInteger))
InnerEvalable(%, %)
InnerEvalable(OrderedVariableList vl, %)
InnerEvalable(OrderedVariableList vl, R)
IntegralDomain if R has IntegralDomain
LeftModule Fraction Integer if R has Algebra Fraction Integer
LeftOreRing if R has GcdDomain
LinearlyExplicitOver Integer if R has LinearlyExplicitOver Integer
MaybeSkewPolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
Module % if R has CommutativeRing
Module Fraction Integer if R has Algebra Fraction Integer
Module R if R has CommutativeRing
NonAssociativeAlgebra % if R has CommutativeRing
NonAssociativeAlgebra Fraction Integer if R has Algebra Fraction Integer
NonAssociativeAlgebra R if R has CommutativeRing
noZeroDivisors if R has EntireRing
PartialDifferentialRing OrderedVariableList vl
PatternMatchable Float if OrderedVariableList vl has PatternMatchable Float and R has PatternMatchable Float
PatternMatchable Integer if OrderedVariableList vl has PatternMatchable Integer and R has PatternMatchable Integer
PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
PolynomialFactorizationExplicit if R has PolynomialFactorizationExplicit
RetractableTo Fraction Integer if R has RetractableTo Fraction Integer
RetractableTo Integer if R has RetractableTo Integer
RetractableTo OrderedVariableList vl
RightModule Fraction Integer if R has Algebra Fraction Integer
RightModule Integer if R has LinearlyExplicitOver Integer
TwoSidedRecip if R has CommutativeRing
UniqueFactorizationDomain if R has PolynomialFactorizationExplicit