DistributedJetBundlePolynomial(R, JB, LJV, E)ΒΆ
jet.spad line 6529 [edit on github]
- R: Ring 
- LJV: List JB 
- E: DirectProductCategory(# LJV, NonNegativeInteger) 
DistributedJetBundlePolynomial implements polynomials in a distributed representation. The unknowns come from a finite list of jet variables. The implementation is basically a copy of the one of GeneralDistributedMultivariatePolynomial.
- 0: %
- from AbelianMonoid 
- 1: %
- from MagmaWithUnit 
- *: (%, %) -> %
- from Magma 
- *: (%, Fraction Integer) -> % if R has Algebra Fraction Integer
- from RightModule Fraction Integer 
- *: (%, Integer) -> % if R has LinearlyExplicitOver Integer
- from RightModule Integer 
- *: (%, R) -> %
- from RightModule R 
- *: (Fraction Integer, %) -> % if R has Algebra Fraction Integer
- from LeftModule Fraction Integer 
- *: (Integer, %) -> %
- from AbelianGroup 
- *: (NonNegativeInteger, %) -> %
- from AbelianMonoid 
- *: (PositiveInteger, %) -> %
- from AbelianSemiGroup 
- *: (R, %) -> %
- from LeftModule R 
- +: (%, %) -> %
- from AbelianSemiGroup 
- -: % -> %
- from AbelianGroup 
- -: (%, %) -> %
- from AbelianGroup 
- /: (%, R) -> % if R has Field
- from AbelianMonoidRing(R, E) 
- ^: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- ^: (%, PositiveInteger) -> %
- from Magma 
- annihilate?: (%, %) -> Boolean
- from Rng 
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean if R has EntireRing
- from EntireRing 
- associator: (%, %, %) -> %
- from NonAssociativeRng 
- binomThmExpt: (%, %, NonNegativeInteger) -> % if % has CommutativeRing
- from FiniteAbelianMonoidRing(R, E) 
- characteristic: () -> NonNegativeInteger
- from NonAssociativeRing 
- charthRoot: % -> Union(%, failed) if R has CharacteristicNonZero or % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- coefficient: (%, E) -> R
- from AbelianMonoidRing(R, E) 
- coefficient: (%, JB, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, E, JB) 
- coefficient: (%, List JB, List NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, E, JB) 
- coefficients: % -> List R
- from FreeModuleCategory(R, E) 
- coerce: % -> % if R has CommutativeRing
- from Algebra % 
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- coerce: Fraction Integer -> % if R has Algebra Fraction Integer or R has RetractableTo Fraction Integer
- coerce: Integer -> %
- from NonAssociativeRing 
- coerce: JB -> %
- from CoercibleFrom JB 
- coerce: R -> %
- from Algebra R 
- commutator: (%, %) -> %
- from NonAssociativeRng 
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- const: % -> R
- const(p)coerces a polynomial into an element of the coefficient ring, if it is constant. Otherwise an error occurs.
- construct: List Record(k: E, c: R) -> %
- from IndexedProductCategory(R, E) 
- constructOrdered: List Record(k: E, c: R) -> %
- from IndexedProductCategory(R, E) 
- content: % -> R if R has GcdDomain
- from FiniteAbelianMonoidRing(R, E) 
- content: (%, JB) -> % if R has GcdDomain
- from PolynomialCategory(R, E, JB) 
- convert: % -> InputForm if R has ConvertibleTo InputForm and JB has ConvertibleTo InputForm
- from ConvertibleTo InputForm 
- convert: % -> JetBundlePolynomial(R, JB)
- convert(p)converts a polynomial- pin distributive representation into a polynomial in recursive representation.
- convert: % -> Pattern Float if R has ConvertibleTo Pattern Float and JB has ConvertibleTo Pattern Float
- from ConvertibleTo Pattern Float 
- convert: % -> Pattern Integer if R has ConvertibleTo Pattern Integer and JB has ConvertibleTo Pattern Integer
- from ConvertibleTo Pattern Integer 
- convert: JetBundlePolynomial(R, JB) -> %
- convert(p)converts a polynomial- pin recursive representation into a polynomial in distributive representation.
- D: (%, JB) -> %
- from PartialDifferentialRing JB 
- D: (%, JB, NonNegativeInteger) -> %
- from PartialDifferentialRing JB 
- D: (%, List JB) -> %
- from PartialDifferentialRing JB 
- D: (%, List JB, List NonNegativeInteger) -> %
- from PartialDifferentialRing JB 
- degree: % -> E
- from AbelianMonoidRing(R, E) 
- degree: (%, JB) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, E, JB) 
- degree: (%, List JB) -> List NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, E, JB) 
- differentiate: (%, JB) -> %
- from PartialDifferentialRing JB 
- differentiate: (%, JB, NonNegativeInteger) -> %
- from PartialDifferentialRing JB 
- differentiate: (%, List JB) -> %
- from PartialDifferentialRing JB 
- differentiate: (%, List JB, List NonNegativeInteger) -> %
- from PartialDifferentialRing JB 
- discriminant: (%, JB) -> % if R has CommutativeRing
- from PolynomialCategory(R, E, JB) 
- eval: (%, %, %) -> %
- from InnerEvalable(%, %) 
- eval: (%, Equation %) -> %
- from Evalable % 
- eval: (%, JB, %) -> %
- from InnerEvalable(JB, %) 
- eval: (%, JB, R) -> %
- from InnerEvalable(JB, R) 
- eval: (%, List %, List %) -> %
- from InnerEvalable(%, %) 
- eval: (%, List Equation %) -> %
- from Evalable % 
- eval: (%, List JB, List %) -> %
- from InnerEvalable(JB, %) 
- eval: (%, List JB, List R) -> %
- from InnerEvalable(JB, R) 
- exquo: (%, %) -> Union(%, failed) if R has EntireRing
- from EntireRing 
- exquo: (%, R) -> Union(%, failed) if R has EntireRing
- from FiniteAbelianMonoidRing(R, E) 
- factor: % -> Factored % if R has PolynomialFactorizationExplicit
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- fmecg: (%, E, R, %) -> %
- from FiniteAbelianMonoidRing(R, E) 
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if R has GcdDomain
- groebner: List % -> List % if R has GcdDomain
- groebner(lp)computes a Groebner basis for the ideal generated by the list of polynomials- lp.
- ground?: % -> Boolean
- from FiniteAbelianMonoidRing(R, E) 
- ground: % -> R
- from FiniteAbelianMonoidRing(R, E) 
- hash: % -> SingleInteger if JB has Hashable and R has Hashable
- from Hashable 
- isExpt: % -> Union(Record(var: JB, exponent: NonNegativeInteger), failed)
- from PolynomialCategory(R, E, JB) 
- isPlus: % -> Union(List %, failed)
- from PolynomialCategory(R, E, JB) 
- isTimes: % -> Union(List %, failed)
- from PolynomialCategory(R, E, JB) 
- latex: % -> String
- from SetCategory 
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if R has GcdDomain
- from LeftOreRing 
- leadingCoefficient: % -> R
- from IndexedProductCategory(R, E) 
- leadingMonomial: % -> %
- from IndexedProductCategory(R, E) 
- leadingSupport: % -> E
- from IndexedProductCategory(R, E) 
- leadingTerm: % -> Record(k: E, c: R)
- from IndexedProductCategory(R, E) 
- leftPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- leftPower: (%, PositiveInteger) -> %
- from Magma 
- leftRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- linearExtend: (E -> R, %) -> R if R has CommutativeRing
- from FreeModuleCategory(R, E) 
- listOfTerms: % -> List Record(k: E, c: R)
- from IndexedDirectProductCategory(R, E) 
- mainVariable: % -> Union(JB, failed)
- from MaybeSkewPolynomialCategory(R, E, JB) 
- map: (R -> R, %) -> %
- from IndexedProductCategory(R, E) 
- mapExponents: (E -> E, %) -> %
- from FiniteAbelianMonoidRing(R, E) 
- minimumDegree: % -> E
- from FiniteAbelianMonoidRing(R, E) 
- minimumDegree: (%, JB) -> NonNegativeInteger
- from PolynomialCategory(R, E, JB) 
- minimumDegree: (%, List JB) -> List NonNegativeInteger
- from PolynomialCategory(R, E, JB) 
- monicDivide: (%, %, JB) -> Record(quotient: %, remainder: %)
- from PolynomialCategory(R, E, JB) 
- monomial?: % -> Boolean
- from IndexedProductCategory(R, E) 
- monomial: (%, JB, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, E, JB) 
- monomial: (%, List JB, List NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, E, JB) 
- monomial: (R, E) -> %
- from IndexedProductCategory(R, E) 
- monomials: % -> List %
- from MaybeSkewPolynomialCategory(R, E, JB) 
- multivariate: (SparseUnivariatePolynomial %, JB) -> %
- from PolynomialCategory(R, E, JB) 
- multivariate: (SparseUnivariatePolynomial R, JB) -> %
- from PolynomialCategory(R, E, JB) 
- numberOfMonomials: % -> NonNegativeInteger
- from IndexedDirectProductCategory(R, E) 
- one?: % -> Boolean
- from MagmaWithUnit 
- opposite?: (%, %) -> Boolean
- from AbelianMonoid 
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if JB has PatternMatchable Float and R has PatternMatchable Float
- from PatternMatchable Float 
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if JB has PatternMatchable Integer and R has PatternMatchable Integer
- from PatternMatchable Integer 
- plenaryPower: (%, PositiveInteger) -> % if R has Algebra Fraction Integer or R has CommutativeRing
- from NonAssociativeAlgebra % 
- pomopo!: (%, R, E, %) -> %
- from FiniteAbelianMonoidRing(R, E) 
- prime?: % -> Boolean if R has PolynomialFactorizationExplicit
- primitiveMonomials: % -> List %
- from MaybeSkewPolynomialCategory(R, E, JB) 
- primitivePart: % -> % if R has GcdDomain
- from PolynomialCategory(R, E, JB) 
- primitivePart: (%, JB) -> % if R has GcdDomain
- from PolynomialCategory(R, E, JB) 
- recip: % -> Union(%, failed)
- from MagmaWithUnit 
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if R has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix R, vec: Vector R)
- from LinearlyExplicitOver R 
- reducedSystem: Matrix % -> Matrix Integer if R has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix R
- from LinearlyExplicitOver R 
- reductum: % -> %
- from IndexedProductCategory(R, E) 
- resultant: (%, %, JB) -> % if R has CommutativeRing
- from PolynomialCategory(R, E, JB) 
- retract: % -> Fraction Integer if R has RetractableTo Fraction Integer
- from RetractableTo Fraction Integer 
- retract: % -> Integer if R has RetractableTo Integer
- from RetractableTo Integer 
- retract: % -> JB
- from RetractableTo JB 
- retract: % -> R
- from RetractableTo R 
- retractIfCan: % -> Union(Fraction Integer, failed) if R has RetractableTo Fraction Integer
- from RetractableTo Fraction Integer 
- retractIfCan: % -> Union(Integer, failed) if R has RetractableTo Integer
- from RetractableTo Integer 
- retractIfCan: % -> Union(JB, failed)
- from RetractableTo JB 
- retractIfCan: % -> Union(R, failed)
- from RetractableTo R 
- rightPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- rightPower: (%, PositiveInteger) -> %
- from Magma 
- rightRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- sample: %
- from AbelianMonoid 
- smaller?: (%, %) -> Boolean if R has Comparable
- from Comparable 
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if R has PolynomialFactorizationExplicit
- squareFree: % -> Factored % if R has GcdDomain
- from PolynomialCategory(R, E, JB) 
- squareFreePart: % -> % if R has GcdDomain
- from PolynomialCategory(R, E, JB) 
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- subtractIfCan: (%, %) -> Union(%, failed)
- support: % -> List E
- from FreeModuleCategory(R, E) 
- totalDegree: % -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, E, JB) 
- totalDegree: (%, List JB) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, E, JB) 
- totalDegreeSorted: (%, List JB) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, E, JB) 
- unit?: % -> Boolean if R has EntireRing
- from EntireRing 
- unitCanonical: % -> % if R has EntireRing
- from EntireRing 
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if R has EntireRing
- from EntireRing 
- univariate: % -> SparseUnivariatePolynomial R
- from PolynomialCategory(R, E, JB) 
- univariate: (%, JB) -> SparseUnivariatePolynomial %
- from PolynomialCategory(R, E, JB) 
- variables: % -> List JB
- from MaybeSkewPolynomialCategory(R, E, JB) 
- zero?: % -> Boolean
- from AbelianMonoid 
AbelianMonoidRing(R, E)
Algebra % if R has CommutativeRing
Algebra Fraction Integer if R has Algebra Fraction Integer
Algebra R if R has CommutativeRing
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer) if R has Algebra Fraction Integer
BiModule(R, R)
canonicalUnitNormal if R has canonicalUnitNormal
CharacteristicNonZero if R has CharacteristicNonZero
CharacteristicZero if R has CharacteristicZero
CoercibleFrom Fraction Integer if R has RetractableTo Fraction Integer
CoercibleFrom Integer if R has RetractableTo Integer
CommutativeRing if R has CommutativeRing
CommutativeStar if R has CommutativeRing
Comparable if R has Comparable
ConvertibleTo InputForm if R has ConvertibleTo InputForm and JB has ConvertibleTo InputForm
ConvertibleTo Pattern Float if R has ConvertibleTo Pattern Float and JB has ConvertibleTo Pattern Float
ConvertibleTo Pattern Integer if R has ConvertibleTo Pattern Integer and JB has ConvertibleTo Pattern Integer
EntireRing if R has EntireRing
Evalable %
FiniteAbelianMonoidRing(R, E)
FreeModuleCategory(R, E)
Hashable if JB has Hashable and R has Hashable
IndexedDirectProductCategory(R, E)
IndexedProductCategory(R, E)
InnerEvalable(%, %)
InnerEvalable(JB, %)
InnerEvalable(JB, R)
IntegralDomain if R has IntegralDomain
LeftModule Fraction Integer if R has Algebra Fraction Integer
LeftOreRing if R has GcdDomain
LinearlyExplicitOver Integer if R has LinearlyExplicitOver Integer
MaybeSkewPolynomialCategory(R, E, JB)
Module % if R has CommutativeRing
Module Fraction Integer if R has Algebra Fraction Integer
Module R if R has CommutativeRing
NonAssociativeAlgebra % if R has CommutativeRing
NonAssociativeAlgebra Fraction Integer if R has Algebra Fraction Integer
NonAssociativeAlgebra R if R has CommutativeRing
noZeroDivisors if R has EntireRing
PatternMatchable Float if JB has PatternMatchable Float and R has PatternMatchable Float
PatternMatchable Integer if JB has PatternMatchable Integer and R has PatternMatchable Integer
PolynomialCategory(R, E, JB)
PolynomialFactorizationExplicit if R has PolynomialFactorizationExplicit
RetractableTo Fraction Integer if R has RetractableTo Fraction Integer
RetractableTo Integer if R has RetractableTo Integer
RightModule Fraction Integer if R has Algebra Fraction Integer
RightModule Integer if R has LinearlyExplicitOver Integer
TwoSidedRecip if R has CommutativeRing
UniqueFactorizationDomain if R has PolynomialFactorizationExplicit