Distribution R¶
distro.spad line 694 [edit on github]
Domain for distributions formally given by moments. moments and different kinds of cumulants are stored in streams and computed on demand.
- 0: %
- from DistributionCategory R 
- ^: (%, PositiveInteger) -> %
- from DistributionCategory R 
- booleanConvolution: (%, %) -> %
- from DistributionCategory R 
- booleanCumulant: (%, PositiveInteger) -> R
- from DistributionCategory R 
- booleanCumulantFromJacobi: (Integer, Sequence R, Sequence R) -> R
- booleanCumulantFromJacobi(n, aa, bb)computes the- nth Boolean cumulant from the given Jacobiparameters- aaand- bb.
- booleanCumulants: % -> Sequence R
- from DistributionCategory R 
- classicalConvolution: (%, %) -> %
- from DistributionCategory R 
- classicalCumulant: (%, PositiveInteger) -> R
- from DistributionCategory R 
- classicalCumulants: % -> Sequence R
- from DistributionCategory R 
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- construct: (Sequence R, Sequence R, Sequence R, Sequence R) -> %
- construct(mom, ccum, fcum, bcum)constructs a distribution with moments- mom, classical cumulants- ccum, free cumulants- fcumand boolean cumulants- bcum. The user must make sure that these are consistent, otherwise the results are unpredictable!
- distributionByBooleanCumulants: Sequence R -> %
- distributionByBooleanCumulants(bb)initiates a distribution with given Boolean cumulants- bb.
- distributionByBooleanCumulants: Stream R -> %
- distributionByBooleanCumulants(bb)initiates a distribution with given Boolean cumulants- bb.
- distributionByClassicalCumulants: Sequence R -> %
- distributionByEvenMoments(kk)initiates a distribution with given classical cumulants- kk.
- distributionByClassicalCumulants: Stream R -> %
- distributionByEvenMoments(kk)initiates a distribution with given classical cumulants- kk.
- distributionByEvenMoments: Sequence R -> %
- distributionByEvenMoments(mm)initiates a distribution with given even moments- mmand odd moments zero.
- distributionByEvenMoments: Stream R -> %
- distributionByEvenMoments(mm)initiates a distribution with given even moments- mmand odd moments zero.
- distributionByFreeCumulants: Sequence R -> %
- distributionByFreeCumulants(cc)initiates a distribution with given free cumulants- cc.
- distributionByFreeCumulants: Stream R -> %
- distributionByFreeCumulants(cc)initiates a distribution with given free cumulants- cc.
- distributionByJacobiParameters: (Sequence R, Sequence R) -> %
- distributionByJacobiParameters(aa, bb)initiates a distribution with given Jacobi parameters- [aa, bb].
- distributionByJacobiParameters: (Stream R, Stream R) -> %
- distributionByJacobiParameters(aa, bb)initiates a distribution with given Jacobi parameters- [aa, bb].
- distributionByMoments: Sequence R -> %
- distributionByMoments(mm)initiates a distribution with given moments- mm.
- distributionByMoments: Stream R -> %
- distributionByMoments(mm)initiates a distribution with given moments- mm.
- distributionByMonotoneCumulants: Sequence R -> % if R has Algebra Fraction Integer
- distributionByMonotoneCumulants(hh)initiates a distribution with given monotone cumulants- hh.
- distributionByMonotoneCumulants: Stream R -> % if R has Algebra Fraction Integer
- distributionByMonotoneCumulants(hh)initiates a distribution with given monotone cumulants- hh.
- distributionBySTransform: (Fraction Integer, Fraction Integer, Sequence R) -> % if R has Algebra Fraction Integer
- distributionBySTransform(series)initiates a distribution with given- S-transform- series.
- distributionBySTransform: Record(puiseux: Fraction Integer, laurent: Fraction Integer, coef: Sequence R) -> % if R has Algebra Fraction Integer
- distributionBySTransform(series)initiates a distribution with given- S-transform- series.
- freeConvolution: (%, %) -> %
- from DistributionCategory R 
- freeCumulant: (%, PositiveInteger) -> R
- from DistributionCategory R 
- freeCumulants: % -> Sequence R
- from DistributionCategory R 
- freeMultiplicativeConvolution: (%, %) -> % if R has Algebra Fraction Integer
- freeMultiplicativeConvolution(mu, nu)computes the free multiplicative convolution of the distributions- muand- nu.
- hankelDeterminants: % -> Stream R
- from DistributionCategory R 
- jacobiParameters: % -> Record(an: Stream Fraction R, bn: Stream Fraction R) if R has IntegralDomain and R hasn’t Field
- from DistributionCategory R 
- jacobiParameters: % -> Record(an: Stream R, bn: Stream R) if R has Field
- from DistributionCategory R 
- latex: % -> String
- from SetCategory 
- moment: (%, NonNegativeInteger) -> R
- from DistributionCategory R 
- moments: % -> Sequence R
- from DistributionCategory R 
- monotoneConvolution: (%, %) -> %
- from DistributionCategory R 
- monotoneCumulants: % -> Sequence R if R has Algebra Fraction Integer
- from DistributionCategory R 
- orthogonalConvolution: (%, %) -> %
- from DistributionCategory R 
- orthogonalPolynomials: % -> Stream SparseUnivariatePolynomial Fraction R if R has IntegralDomain and R hasn’t Field
- from DistributionCategory R 
- orthogonalPolynomials: % -> Stream SparseUnivariatePolynomial R if R has Field
- from DistributionCategory R 
- subordinationConvolution: (%, %) -> %
- from DistributionCategory R