AlgebraicallyClosedFunctionSpace R¶
algfunc.spad line 147 [edit on github]
R: Join(Comparable, IntegralDomain)
Model for algebraically closed function spaces.
- 0: %
 from AbelianMonoid
- 1: %
 from MagmaWithUnit
- *: (%, %) -> %
 from Magma
- *: (%, Fraction Integer) -> %
 from RightModule Fraction Integer
- *: (%, Integer) -> % if R has LinearlyExplicitOver Integer
 from RightModule Integer
- *: (%, R) -> %
 from RightModule R
- *: (Fraction Integer, %) -> %
 from LeftModule Fraction Integer
- *: (Integer, %) -> %
 from AbelianGroup
- *: (NonNegativeInteger, %) -> %
 from AbelianMonoid
- *: (PositiveInteger, %) -> %
 from AbelianSemiGroup
- *: (R, %) -> %
 from LeftModule R
- +: (%, %) -> %
 from AbelianSemiGroup
- -: % -> %
 from AbelianGroup
- -: (%, %) -> %
 from AbelianGroup
- /: (%, %) -> %
 from Group
- /: (SparseMultivariatePolynomial(R, Kernel %), SparseMultivariatePolynomial(R, Kernel %)) -> %
 from FunctionSpace2(R, Kernel %)
- ^: (%, Fraction Integer) -> %
 from RadicalCategory
- ^: (%, Integer) -> %
 from Group
- ^: (%, NonNegativeInteger) -> %
 from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
 from Magma
- algtower: % -> List Kernel %
 from FunctionSpace2(R, Kernel %)
- algtower: List % -> List Kernel %
 from FunctionSpace2(R, Kernel %)
- annihilate?: (%, %) -> Boolean
 from Rng
- antiCommutator: (%, %) -> %
 
- applyQuote: (Symbol, %) -> %
 from FunctionSpace2(R, Kernel %)
- applyQuote: (Symbol, %, %) -> %
 from FunctionSpace2(R, Kernel %)
- applyQuote: (Symbol, %, %, %) -> %
 from FunctionSpace2(R, Kernel %)
- applyQuote: (Symbol, %, %, %, %) -> %
 from FunctionSpace2(R, Kernel %)
- applyQuote: (Symbol, List %) -> %
 from FunctionSpace2(R, Kernel %)
- associates?: (%, %) -> Boolean
 from EntireRing
- associator: (%, %, %) -> %
 from NonAssociativeRng
- belong?: BasicOperator -> Boolean
 from ExpressionSpace2 Kernel %
- box: % -> %
 from ExpressionSpace2 Kernel %
- characteristic: () -> NonNegativeInteger
 from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if R has CharacteristicNonZero
 
- coerce: % -> %
 from Algebra %
- coerce: % -> OutputForm
 from CoercibleTo OutputForm
- coerce: AlgebraicNumber -> % if R has RetractableTo Integer
 - coerce: Fraction Integer -> %
 from CoercibleFrom Fraction Integer
- coerce: Fraction Polynomial Fraction R -> %
 from FunctionSpace2(R, Kernel %)
- coerce: Fraction Polynomial R -> %
 from CoercibleFrom Fraction Polynomial R
- coerce: Fraction R -> %
 from FunctionSpace2(R, Kernel %)
- coerce: Integer -> %
 from CoercibleFrom Integer
- coerce: Kernel % -> %
 from CoercibleFrom Kernel %
- coerce: Polynomial Fraction R -> %
 from FunctionSpace2(R, Kernel %)
- coerce: Polynomial R -> %
 from CoercibleFrom Polynomial R
- coerce: R -> %
 from CoercibleFrom R
- coerce: SparseMultivariatePolynomial(R, Kernel %) -> %
 from FunctionSpace2(R, Kernel %)
- coerce: Symbol -> %
 from CoercibleFrom Symbol
- commutator: (%, %) -> %
 from NonAssociativeRng
- convert: % -> InputForm if R has ConvertibleTo InputForm
 from ConvertibleTo InputForm
- convert: % -> Pattern Float if R has ConvertibleTo Pattern Float
 from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if R has ConvertibleTo Pattern Integer
 from ConvertibleTo Pattern Integer
- convert: Factored % -> %
 from FunctionSpace2(R, Kernel %)
- D: (%, List Symbol) -> %
 - D: (%, List Symbol, List NonNegativeInteger) -> %
 - D: (%, Symbol) -> %
 - D: (%, Symbol, NonNegativeInteger) -> %
 
- definingPolynomial: % -> %
 from ExpressionSpace2 Kernel %
- denom: % -> SparseMultivariatePolynomial(R, Kernel %)
 from FunctionSpace2(R, Kernel %)
- denominator: % -> %
 from FunctionSpace2(R, Kernel %)
- differentiate: (%, List Symbol) -> %
 - differentiate: (%, List Symbol, List NonNegativeInteger) -> %
 - differentiate: (%, Symbol) -> %
 - differentiate: (%, Symbol, NonNegativeInteger) -> %
 
- distribute: % -> %
 from ExpressionSpace2 Kernel %
- distribute: (%, %) -> %
 from ExpressionSpace2 Kernel %
- divide: (%, %) -> Record(quotient: %, remainder: %)
 from EuclideanDomain
- elt: (BasicOperator, %) -> %
 from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %) -> %
 from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %) -> %
 from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %) -> %
 from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %, %) -> %
 from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %, %, %) -> %
 from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %, %, %, %) -> %
 from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %, %, %, %, %) -> %
 from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %, %, %, %, %, %) -> %
 from ExpressionSpace2 Kernel %
- elt: (BasicOperator, List %) -> %
 from ExpressionSpace2 Kernel %
- euclideanSize: % -> NonNegativeInteger
 from EuclideanDomain
- eval: (%, %, %) -> %
 from InnerEvalable(%, %)
- eval: (%, BasicOperator, % -> %) -> %
 from ExpressionSpace2 Kernel %
- eval: (%, BasicOperator, %, Symbol) -> % if R has ConvertibleTo InputForm
 from FunctionSpace2(R, Kernel %)
- eval: (%, BasicOperator, List % -> %) -> %
 from ExpressionSpace2 Kernel %
- eval: (%, Equation %) -> %
 from Evalable %
- eval: (%, Kernel %, %) -> %
 from InnerEvalable(Kernel %, %)
- eval: (%, List %, List %) -> %
 from InnerEvalable(%, %)
- eval: (%, List BasicOperator, List %, Symbol) -> % if R has ConvertibleTo InputForm
 from FunctionSpace2(R, Kernel %)
- eval: (%, List BasicOperator, List(% -> %)) -> %
 from ExpressionSpace2 Kernel %
- eval: (%, List BasicOperator, List(List % -> %)) -> %
 from ExpressionSpace2 Kernel %
- eval: (%, List Equation %) -> %
 from Evalable %
- eval: (%, List Kernel %, List %) -> %
 from InnerEvalable(Kernel %, %)
- eval: (%, List Symbol, List NonNegativeInteger, List(% -> %)) -> %
 from FunctionSpace2(R, Kernel %)
- eval: (%, List Symbol, List NonNegativeInteger, List(List % -> %)) -> %
 from FunctionSpace2(R, Kernel %)
- eval: (%, List Symbol, List(% -> %)) -> %
 from ExpressionSpace2 Kernel %
- eval: (%, List Symbol, List(List % -> %)) -> %
 from ExpressionSpace2 Kernel %
- eval: (%, Symbol, % -> %) -> %
 from ExpressionSpace2 Kernel %
- eval: (%, Symbol, List % -> %) -> %
 from ExpressionSpace2 Kernel %
- eval: (%, Symbol, NonNegativeInteger, % -> %) -> %
 from FunctionSpace2(R, Kernel %)
- eval: (%, Symbol, NonNegativeInteger, List % -> %) -> %
 from FunctionSpace2(R, Kernel %)
- even?: % -> Boolean if % has RetractableTo Integer
 from ExpressionSpace2 Kernel %
- expressIdealMember: (List %, %) -> Union(List %, failed)
 from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed)
 from EntireRing
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
 from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
 from EuclideanDomain
- freeOf?: (%, %) -> Boolean
 from ExpressionSpace2 Kernel %
- freeOf?: (%, Symbol) -> Boolean
 from ExpressionSpace2 Kernel %
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
 from GcdDomain
- ground?: % -> Boolean
 from FunctionSpace2(R, Kernel %)
- ground: % -> R
 from FunctionSpace2(R, Kernel %)
- height: % -> NonNegativeInteger
 from ExpressionSpace2 Kernel %
- is?: (%, BasicOperator) -> Boolean
 from ExpressionSpace2 Kernel %
- is?: (%, Symbol) -> Boolean
 from ExpressionSpace2 Kernel %
- isExpt: % -> Union(Record(var: Kernel %, exponent: Integer), failed)
 from FunctionSpace2(R, Kernel %)
- isExpt: (%, BasicOperator) -> Union(Record(var: Kernel %, exponent: Integer), failed)
 from FunctionSpace2(R, Kernel %)
- isExpt: (%, Symbol) -> Union(Record(var: Kernel %, exponent: Integer), failed)
 from FunctionSpace2(R, Kernel %)
- isMult: % -> Union(Record(coef: Integer, var: Kernel %), failed)
 from FunctionSpace2(R, Kernel %)
- isPlus: % -> Union(List %, failed)
 from FunctionSpace2(R, Kernel %)
- isPower: % -> Union(Record(val: %, exponent: Integer), failed)
 from FunctionSpace2(R, Kernel %)
- isTimes: % -> Union(List %, failed)
 from FunctionSpace2(R, Kernel %)
- kernel: (BasicOperator, %) -> %
 from ExpressionSpace2 Kernel %
- kernel: (BasicOperator, List %) -> %
 from ExpressionSpace2 Kernel %
- kernels: % -> List Kernel %
 from ExpressionSpace2 Kernel %
- kernels: List % -> List Kernel %
 from ExpressionSpace2 Kernel %
- latex: % -> String
 from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
 from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> %
 from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
 from Magma
- leftRecip: % -> Union(%, failed)
 from MagmaWithUnit
- mainKernel: % -> Union(Kernel %, failed)
 from ExpressionSpace2 Kernel %
- map: (% -> %, Kernel %) -> %
 from ExpressionSpace2 Kernel %
- minPoly: Kernel % -> SparseUnivariatePolynomial %
 from ExpressionSpace2 Kernel %
- multiEuclidean: (List %, %) -> Union(List %, failed)
 from EuclideanDomain
- nthRoot: (%, Integer) -> %
 from RadicalCategory
- numer: % -> SparseMultivariatePolynomial(R, Kernel %)
 from FunctionSpace2(R, Kernel %)
- numerator: % -> %
 from FunctionSpace2(R, Kernel %)
- odd?: % -> Boolean if % has RetractableTo Integer
 from ExpressionSpace2 Kernel %
- one?: % -> Boolean
 from MagmaWithUnit
- operator: BasicOperator -> BasicOperator
 from ExpressionSpace2 Kernel %
- operators: % -> List BasicOperator
 from ExpressionSpace2 Kernel %
- opposite?: (%, %) -> Boolean
 from AbelianMonoid
- paren: % -> %
 from ExpressionSpace2 Kernel %
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if R has PatternMatchable Float
 from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if R has PatternMatchable Integer
 from PatternMatchable Integer
- plenaryPower: (%, PositiveInteger) -> %
 from NonAssociativeAlgebra R
- principalIdeal: List % -> Record(coef: List %, generator: %)
 from PrincipalIdealDomain
- quo: (%, %) -> %
 from EuclideanDomain
- recip: % -> Union(%, failed)
 from MagmaWithUnit
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if R has LinearlyExplicitOver Integer
 - reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix R, vec: Vector R)
 from LinearlyExplicitOver R
- reducedSystem: Matrix % -> Matrix Integer if R has LinearlyExplicitOver Integer
 - reducedSystem: Matrix % -> Matrix R
 from LinearlyExplicitOver R
- rem: (%, %) -> %
 from EuclideanDomain
- retract: % -> AlgebraicNumber if R has RetractableTo Integer
 - retract: % -> Fraction Integer if R has RetractableTo Integer or R has RetractableTo Fraction Integer
 from RetractableTo Fraction Integer
- retract: % -> Fraction Polynomial R
 from RetractableTo Fraction Polynomial R
- retract: % -> Integer if R has RetractableTo Integer
 from RetractableTo Integer
- retract: % -> Kernel %
 from RetractableTo Kernel %
- retract: % -> Polynomial R
 from RetractableTo Polynomial R
- retract: % -> R
 from RetractableTo R
- retract: % -> Symbol
 from RetractableTo Symbol
- retractIfCan: % -> Union(AlgebraicNumber, failed) if R has RetractableTo Integer
 - retractIfCan: % -> Union(Fraction Integer, failed) if R has RetractableTo Integer or R has RetractableTo Fraction Integer
 from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Fraction Polynomial R, failed)
 from RetractableTo Fraction Polynomial R
- retractIfCan: % -> Union(Integer, failed) if R has RetractableTo Integer
 from RetractableTo Integer
- retractIfCan: % -> Union(Kernel %, failed)
 from RetractableTo Kernel %
- retractIfCan: % -> Union(Polynomial R, failed)
 from RetractableTo Polynomial R
- retractIfCan: % -> Union(R, failed)
 from RetractableTo R
- retractIfCan: % -> Union(Symbol, failed)
 from RetractableTo Symbol
- rightPower: (%, NonNegativeInteger) -> %
 from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
 from Magma
- rightRecip: % -> Union(%, failed)
 from MagmaWithUnit
- rootOf: % -> %
 rootOf(p)returnsysuch thatp(y) = 0. Error: ifphas more than one variabley.
- rootOf: (%, Symbol) -> %
 rootOf(p, y)returnsysuch thatp(y) = 0. The object returned displays as'y.- rootOf: (SparseUnivariatePolynomial %, Symbol) -> %
 - rootOf: Polynomial % -> %
 - rootOf: SparseUnivariatePolynomial % -> %
 
- rootsOf: % -> List %
 rootsOf(p, y)returns[y1, ..., yn]such thatp(yi) = 0; Note: the returned valuesy1, …,yncontain new symbols which are bound in the interpreter to the respective values. Error: ifphas more than one variabley.
- rootsOf: (%, Symbol) -> List %
 rootsOf(p, y)returns[y1, ..., yn]such thatp(yi) = 0; The returned roots contain new symbols'\%z0,'\%z1…; Note: the new symbols are bound in the interpreter to the respective values.- rootsOf: (SparseUnivariatePolynomial %, Symbol) -> List %
 - rootsOf: Polynomial % -> List %
 - rootsOf: SparseUnivariatePolynomial % -> List %
 
rootSum: (%, SparseUnivariatePolynomial %, Symbol) -> %
- sample: %
 from AbelianMonoid
- sizeLess?: (%, %) -> Boolean
 from EuclideanDomain
- smaller?: (%, %) -> Boolean
 from Comparable
- sqrt: % -> %
 from RadicalCategory
- squareFree: % -> Factored %
 
- squareFreePart: % -> %
 
- subst: (%, Equation %) -> %
 from ExpressionSpace2 Kernel %
- subst: (%, List Equation %) -> %
 from ExpressionSpace2 Kernel %
- subst: (%, List Kernel %, List %) -> %
 from ExpressionSpace2 Kernel %
- subtractIfCan: (%, %) -> Union(%, failed)
 
- tower: % -> List Kernel %
 from ExpressionSpace2 Kernel %
- tower: List % -> List Kernel %
 from ExpressionSpace2 Kernel %
- unit?: % -> Boolean
 from EntireRing
- unitCanonical: % -> %
 from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
 from EntireRing
- univariate: (%, Kernel %) -> Fraction SparseUnivariatePolynomial %
 from FunctionSpace2(R, Kernel %)
- variables: % -> List Symbol
 from FunctionSpace2(R, Kernel %)
- variables: List % -> List Symbol
 from FunctionSpace2(R, Kernel %)
- zero?: % -> Boolean
 from AbelianMonoid
- zeroOf: % -> %
 zeroOf(p)returnsysuch thatp(y) = 0. The valueyis expressed in terms of radicals if possible, and otherwise as an implicit algebraic quantity. Error: ifphas more than one variable.
- zeroOf: (%, Symbol) -> %
 zeroOf(p, y)returnsysuch thatp(y) = 0. The valueyis expressed in terms of radicals if possible, and otherwise as an implicit algebraic quantity which displays as'y.- zeroOf: (SparseUnivariatePolynomial %, Symbol) -> %
 - zeroOf: Polynomial % -> %
 - zeroOf: SparseUnivariatePolynomial % -> %
 
- zerosOf: % -> List %
 zerosOf(p)returns[y1, ..., yn]such thatp(yi) = 0. Theyi'sare expressed in radicals if possible. Note: the returned valuesy1, …,yncontain new symbols which are bound in the interpreter to the respective values. Error: ifphas more than one variable.
- zerosOf: (%, Symbol) -> List %
 zerosOf(p, y)returns[y1, ..., yn]such thatp(yi) = 0. Theyi'sare expressed in radicals if possible, and otherwise as implicit algebraic quantities containing new symbols which display as'\%z0,'\%z1, …; The new symbols are bound in the interpreter to the respective values.- zerosOf: (SparseUnivariatePolynomial %, Symbol) -> List %
 - zerosOf: Polynomial % -> List %
 - zerosOf: SparseUnivariatePolynomial % -> List %
 
Algebra %
Algebra R
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
BiModule(R, R)
CharacteristicNonZero if R has CharacteristicNonZero
CharacteristicZero if R has CharacteristicZero
CoercibleFrom AlgebraicNumber if R has RetractableTo Integer
CoercibleFrom Fraction Integer if R has RetractableTo Integer or R has RetractableTo Fraction Integer
CoercibleFrom Fraction Polynomial R
CoercibleFrom Integer if R has RetractableTo Integer
ConvertibleTo InputForm if R has ConvertibleTo InputForm
ConvertibleTo Pattern Float if R has ConvertibleTo Pattern Float
ConvertibleTo Pattern Integer if R has ConvertibleTo Pattern Integer
Evalable %
FunctionSpace2(R, Kernel %)
InnerEvalable(%, %)
InnerEvalable(Kernel %, %)
LinearlyExplicitOver Integer if R has LinearlyExplicitOver Integer
Module %
Module R
NonAssociativeAlgebra Fraction Integer
PartialDifferentialRing Symbol
PatternMatchable Float if R has PatternMatchable Float
PatternMatchable Integer if R has PatternMatchable Integer
RetractableTo AlgebraicNumber if R has RetractableTo Integer
RetractableTo Fraction Integer if R has RetractableTo Fraction Integer or R has RetractableTo Integer
RetractableTo Fraction Polynomial R
RetractableTo Integer if R has RetractableTo Integer
RightModule Integer if R has LinearlyExplicitOver Integer