XPolynomialRing(R, E)ΒΆ
xpoly.spad line 135 [edit on github]
R: Ring
This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring), and words belonging to an arbitrary OrderedMonoid. This type is used, for instance, by the XDistributedPolynomial domain constructor where the Monoid is free.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- #: % -> NonNegativeInteger
\# p
returns the number of terms inp
.
- *: (%, R) -> %
p*r
returns the product ofp
byr
.- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, R) -> % if R has Field
p/r
returnsp*(1/r)
.
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associator: (%, %, %) -> %
from NonAssociativeRng
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- coef: (%, E) -> R
coef(p, e)
extracts the coefficient of the monomiale
. Returns zero ife
is not present.
- coefficient: (%, E) -> R
from FreeModuleCategory(R, E)
- coefficients: % -> List R
from FreeModuleCategory(R, E)
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: E -> %
coerce(e)
returns1*e
- coerce: Integer -> %
from NonAssociativeRing
- coerce: R -> %
from XAlgebra R
- commutator: (%, %) -> %
from NonAssociativeRng
- constant?: % -> Boolean
constant?(p)
tests whether the polynomialp
belongs to the coefficient ring.
- constant: % -> R
constant(p)
return the constant term ofp
.
- construct: List Record(k: E, c: R) -> %
from IndexedProductCategory(R, E)
- constructOrdered: List Record(k: E, c: R) -> %
from IndexedProductCategory(R, E)
- latex: % -> String
from SetCategory
- leadingCoefficient: % -> R
from IndexedProductCategory(R, E)
- leadingMonomial: % -> %
from IndexedProductCategory(R, E)
- leadingSupport: % -> E
from IndexedProductCategory(R, E)
- leadingTerm: % -> Record(k: E, c: R)
from IndexedProductCategory(R, E)
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- linearExtend: (E -> R, %) -> R if R has CommutativeRing
from FreeModuleCategory(R, E)
- listOfTerms: % -> List Record(k: E, c: R)
from IndexedDirectProductCategory(R, E)
- map: (R -> R, %) -> %
map(fn, x)
returnsSum(fn(r_i) w_i)
ifx
writesSum(r_i w_i)
.
- maxdeg: % -> E
maxdeg(p)
returns the greatest word occurring in the polynomialp
with a non-zero coefficient. An error is produced ifp
is zero.
- mindeg: % -> E
mindeg(p)
returns the smallest word occurring in the polynomialp
with a non-zero coefficient. An error is produced ifp
is zero.
- monomial?: % -> Boolean
from IndexedProductCategory(R, E)
- monomial: (R, E) -> %
from IndexedProductCategory(R, E)
- monomials: % -> List %
from FreeModuleCategory(R, E)
- numberOfMonomials: % -> NonNegativeInteger
from IndexedDirectProductCategory(R, E)
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- plenaryPower: (%, PositiveInteger) -> % if R has CommutativeRing
from NonAssociativeAlgebra R
- quasiRegular?: % -> Boolean
quasiRegular?(x)
returntrue
ifconstant(p)
is zero.
- quasiRegular: % -> %
quasiRegular(x)
returnx
minus its constant term.
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reductum: % -> %
reductum(p)
returnsp
minus its leading term. An error is produced ifp
is zero.
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- smaller?: (%, %) -> Boolean if R has Comparable
from Comparable
- subtractIfCan: (%, %) -> Union(%, failed)
- support: % -> List E
from FreeModuleCategory(R, E)
- zero?: % -> Boolean
from AbelianMonoid
Algebra R if R has CommutativeRing
BiModule(%, %)
BiModule(R, R)
canonicalUnitNormal if R has canonicalUnitNormal
Comparable if R has Comparable
FreeModuleCategory(R, E)
IndexedDirectProductCategory(R, E)
IndexedProductCategory(R, E)
Module R if R has CommutativeRing
NonAssociativeAlgebra R if R has CommutativeRing
noZeroDivisors if R has noZeroDivisors
XAlgebra R