XPolynomialRing(R, E)ΒΆ

xpoly.spad line 135 [edit on github]

This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring), and words belonging to an arbitrary OrderedMonoid. This type is used, for instance, by the XDistributedPolynomial domain constructor where the Monoid is free.

0: %

from AbelianMonoid

1: %

from MagmaWithUnit

#: % -> NonNegativeInteger

\# p returns the number of terms in p.

*: (%, %) -> %

from Magma

*: (%, R) -> %

p*r returns the product of p by r.

*: (Integer, %) -> %

from AbelianGroup

*: (NonNegativeInteger, %) -> %

from AbelianMonoid

*: (PositiveInteger, %) -> %

from AbelianSemiGroup

*: (R, %) -> %

from LeftModule R

+: (%, %) -> %

from AbelianSemiGroup

-: % -> %

from AbelianGroup

-: (%, %) -> %

from AbelianGroup

/: (%, R) -> % if R has Field

p/r returns p*(1/r).

=: (%, %) -> Boolean

from BasicType

^: (%, NonNegativeInteger) -> %

from MagmaWithUnit

^: (%, PositiveInteger) -> %

from Magma

~=: (%, %) -> Boolean

from BasicType

annihilate?: (%, %) -> Boolean

from Rng

antiCommutator: (%, %) -> %

from NonAssociativeSemiRng

associator: (%, %, %) -> %

from NonAssociativeRng

characteristic: () -> NonNegativeInteger

from NonAssociativeRing

coef: (%, E) -> R

coef(p, e) extracts the coefficient of the monomial e. Returns zero if e is not present.

coefficient: (%, E) -> R

from FreeModuleCategory(R, E)

coefficients: % -> List R

from FreeModuleCategory(R, E)

coerce: % -> OutputForm

from CoercibleTo OutputForm

coerce: E -> %

coerce(e) returns 1*e

coerce: Integer -> %

from NonAssociativeRing

coerce: R -> %

from XAlgebra R

commutator: (%, %) -> %

from NonAssociativeRng

constant?: % -> Boolean

constant?(p) tests whether the polynomial p belongs to the coefficient ring.

constant: % -> R

constant(p) return the constant term of p.

construct: List Record(k: E, c: R) -> %

from IndexedProductCategory(R, E)

constructOrdered: List Record(k: E, c: R) -> %

from IndexedProductCategory(R, E)

latex: % -> String

from SetCategory

leadingCoefficient: % -> R

from IndexedProductCategory(R, E)

leadingMonomial: % -> %

from IndexedProductCategory(R, E)

leadingSupport: % -> E

from IndexedProductCategory(R, E)

leadingTerm: % -> Record(k: E, c: R)

from IndexedProductCategory(R, E)

leftPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

leftPower: (%, PositiveInteger) -> %

from Magma

leftRecip: % -> Union(%, failed)

from MagmaWithUnit

linearExtend: (E -> R, %) -> R if R has CommutativeRing

from FreeModuleCategory(R, E)

listOfTerms: % -> List Record(k: E, c: R)

from IndexedDirectProductCategory(R, E)

map: (R -> R, %) -> %

map(fn, x) returns Sum(fn(r_i) w_i) if x writes Sum(r_i w_i).

maxdeg: % -> E

maxdeg(p) returns the greatest word occurring in the polynomial p with a non-zero coefficient. An error is produced if p is zero.

mindeg: % -> E

mindeg(p) returns the smallest word occurring in the polynomial p with a non-zero coefficient. An error is produced if p is zero.

monomial?: % -> Boolean

from IndexedProductCategory(R, E)

monomial: (R, E) -> %

from IndexedProductCategory(R, E)

monomials: % -> List %

from FreeModuleCategory(R, E)

numberOfMonomials: % -> NonNegativeInteger

from IndexedDirectProductCategory(R, E)

one?: % -> Boolean

from MagmaWithUnit

opposite?: (%, %) -> Boolean

from AbelianMonoid

plenaryPower: (%, PositiveInteger) -> % if R has CommutativeRing

from NonAssociativeAlgebra R

quasiRegular?: % -> Boolean

quasiRegular?(x) return true if constant(p) is zero.

quasiRegular: % -> %

quasiRegular(x) return x minus its constant term.

recip: % -> Union(%, failed)

from MagmaWithUnit

reductum: % -> %

reductum(p) returns p minus its leading term. An error is produced if p is zero.

rightPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

rightPower: (%, PositiveInteger) -> %

from Magma

rightRecip: % -> Union(%, failed)

from MagmaWithUnit

sample: %

from AbelianMonoid

smaller?: (%, %) -> Boolean if R has Comparable

from Comparable

subtractIfCan: (%, %) -> Union(%, failed)

from CancellationAbelianMonoid

support: % -> List E

from FreeModuleCategory(R, E)

zero?: % -> Boolean

from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianProductCategory R

AbelianSemiGroup

Algebra R if R has CommutativeRing

BasicType

BiModule(%, %)

BiModule(R, R)

CancellationAbelianMonoid

canonicalUnitNormal if R has canonicalUnitNormal

CoercibleTo OutputForm

Comparable if R has Comparable

FreeModuleCategory(R, E)

IndexedDirectProductCategory(R, E)

IndexedProductCategory(R, E)

LeftModule %

LeftModule R

Magma

MagmaWithUnit

Module R if R has CommutativeRing

Monoid

NonAssociativeAlgebra R if R has CommutativeRing

NonAssociativeRing

NonAssociativeRng

NonAssociativeSemiRing

NonAssociativeSemiRng

noZeroDivisors if R has noZeroDivisors

RightModule %

RightModule R

Ring

Rng

SemiGroup

SemiRing

SemiRng

SetCategory

unitsKnown

XAlgebra R