UnivariatePuiseuxSeriesCategory CoefΒΆ
pscat.spad line 425 [edit on github]
Coef: Ring
UnivariatePuiseuxSeriesCategory is the category of Puiseux series in one variable.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from LeftModule %
- *: (%, Coef) -> %
from RightModule Coef
- *: (%, Fraction Integer) -> % if Coef has Algebra Fraction Integer
from RightModule Fraction Integer
- *: (Coef, %) -> %
from LeftModule Coef
- *: (Fraction Integer, %) -> % if Coef has Algebra Fraction Integer
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, %) -> % if Coef has Field
from Field
- /: (%, Coef) -> % if Coef has Field
from AbelianMonoidRing(Coef, Fraction Integer)
- ^: (%, %) -> % if Coef has Algebra Fraction Integer
- ^: (%, Fraction Integer) -> % if Coef has Algebra Fraction Integer
from RadicalCategory
- ^: (%, Integer) -> % if Coef has Field
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- approximate: (%, Fraction Integer) -> Coef if Coef has coerce: Symbol -> Coef and Coef has ^: (Coef, Fraction Integer) -> Coef
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- associates?: (%, %) -> Boolean if Coef has IntegralDomain
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- center: % -> Coef
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if Coef has CharacteristicNonZero
- coefficient: (%, Fraction Integer) -> Coef
from AbelianMonoidRing(Coef, Fraction Integer)
- coerce: % -> % if Coef has CommutativeRing
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Coef -> % if Coef has CommutativeRing
from Algebra Coef
- coerce: Fraction Integer -> % if Coef has Algebra Fraction Integer
- coerce: Integer -> %
from NonAssociativeRing
- commutator: (%, %) -> %
from NonAssociativeRng
- complete: % -> %
from PowerSeriesCategory(Coef, Fraction Integer, SingletonAsOrderedSet)
- construct: List Record(k: Fraction Integer, c: Coef) -> %
from IndexedProductCategory(Coef, Fraction Integer)
- constructOrdered: List Record(k: Fraction Integer, c: Coef) -> %
from IndexedProductCategory(Coef, Fraction Integer)
- D: % -> % if Coef has *: (Fraction Integer, Coef) -> Coef
from DifferentialRing
- D: (%, List Symbol) -> % if Coef has *: (Fraction Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if Coef has *: (Fraction Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> % if Coef has *: (Fraction Integer, Coef) -> Coef
from DifferentialRing
- D: (%, Symbol) -> % if Coef has *: (Fraction Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if Coef has *: (Fraction Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- degree: % -> Fraction Integer
from PowerSeriesCategory(Coef, Fraction Integer, SingletonAsOrderedSet)
- differentiate: % -> % if Coef has *: (Fraction Integer, Coef) -> Coef
from DifferentialRing
- differentiate: (%, List Symbol) -> % if Coef has *: (Fraction Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if Coef has *: (Fraction Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> % if Coef has *: (Fraction Integer, Coef) -> Coef
from DifferentialRing
- differentiate: (%, Symbol) -> % if Coef has *: (Fraction Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if Coef has *: (Fraction Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- divide: (%, %) -> Record(quotient: %, remainder: %) if Coef has Field
from EuclideanDomain
- elt: (%, %) -> %
from Eltable(%, %)
- elt: (%, Fraction Integer) -> Coef
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- euclideanSize: % -> NonNegativeInteger if Coef has Field
from EuclideanDomain
- eval: (%, Coef) -> Stream Coef if Coef has ^: (Coef, Fraction Integer) -> Coef
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- expressIdealMember: (List %, %) -> Union(List %, failed) if Coef has Field
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed) if Coef has IntegralDomain
from EntireRing
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %) if Coef has Field
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed) if Coef has Field
from EuclideanDomain
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if Coef has Field
from GcdDomain
- integrate: % -> % if Coef has Algebra Fraction Integer
from UnivariateSeriesWithRationalExponents(Coef, Fraction Integer)
- integrate: (%, Symbol) -> % if Coef has variables: Coef -> List Symbol and Coef has integrate: (Coef, Symbol) -> Coef and Coef has Algebra Fraction Integer
from UnivariateSeriesWithRationalExponents(Coef, Fraction Integer)
- inv: % -> % if Coef has Field
from DivisionRing
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if Coef has Field
from LeftOreRing
- leadingCoefficient: % -> Coef
from PowerSeriesCategory(Coef, Fraction Integer, SingletonAsOrderedSet)
- leadingMonomial: % -> %
from PowerSeriesCategory(Coef, Fraction Integer, SingletonAsOrderedSet)
- leadingSupport: % -> Fraction Integer
from IndexedProductCategory(Coef, Fraction Integer)
- leadingTerm: % -> Record(k: Fraction Integer, c: Coef)
from IndexedProductCategory(Coef, Fraction Integer)
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- map: (Coef -> Coef, %) -> %
from IndexedProductCategory(Coef, Fraction Integer)
- monomial?: % -> Boolean
from IndexedProductCategory(Coef, Fraction Integer)
- multiEuclidean: (List %, %) -> Union(List %, failed) if Coef has Field
from EuclideanDomain
- multiplyExponents: (%, Fraction Integer) -> %
multiplyExponents(f, r)
multiplies all exponents of the power seriesf
by the positive rational numberr
.- multiplyExponents: (%, PositiveInteger) -> %
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: % -> Fraction Integer
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- order: (%, Fraction Integer) -> Fraction Integer
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- plenaryPower: (%, PositiveInteger) -> % if Coef has CommutativeRing or Coef has Algebra Fraction Integer
from NonAssociativeAlgebra %
- pole?: % -> Boolean
from PowerSeriesCategory(Coef, Fraction Integer, SingletonAsOrderedSet)
- principalIdeal: List % -> Record(coef: List %, generator: %) if Coef has Field
from PrincipalIdealDomain
- quo: (%, %) -> % if Coef has Field
from EuclideanDomain
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reductum: % -> %
from IndexedProductCategory(Coef, Fraction Integer)
- rem: (%, %) -> % if Coef has Field
from EuclideanDomain
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- series: (NonNegativeInteger, Stream Record(k: Fraction Integer, c: Coef)) -> %
series(n, st)
creates a series from a common denomiator and a stream of non-zero terms, where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents andn
should be a common denominator for the exponents in the stream of terms.
- sizeLess?: (%, %) -> Boolean if Coef has Field
from EuclideanDomain
- sqrt: % -> % if Coef has Algebra Fraction Integer
from RadicalCategory
- squareFree: % -> Factored % if Coef has Field
- squareFreePart: % -> % if Coef has Field
- subtractIfCan: (%, %) -> Union(%, failed)
- terms: % -> Stream Record(k: Fraction Integer, c: Coef)
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- truncate: (%, Fraction Integer) -> %
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- truncate: (%, Fraction Integer, Fraction Integer) -> %
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- unit?: % -> Boolean if Coef has IntegralDomain
from EntireRing
- unitCanonical: % -> % if Coef has IntegralDomain
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if Coef has IntegralDomain
from EntireRing
- variable: % -> Symbol
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- zero?: % -> Boolean
from AbelianMonoid
AbelianMonoidRing(Coef, Fraction Integer)
Algebra % if Coef has CommutativeRing
Algebra Coef if Coef has CommutativeRing
Algebra Fraction Integer if Coef has Algebra Fraction Integer
ArcHyperbolicFunctionCategory if Coef has Algebra Fraction Integer
ArcTrigonometricFunctionCategory if Coef has Algebra Fraction Integer
BiModule(%, %)
BiModule(Coef, Coef)
BiModule(Fraction Integer, Fraction Integer) if Coef has Algebra Fraction Integer
canonicalsClosed if Coef has Field
canonicalUnitNormal if Coef has Field
CharacteristicNonZero if Coef has CharacteristicNonZero
CharacteristicZero if Coef has CharacteristicZero
CommutativeRing if Coef has CommutativeRing
CommutativeStar if Coef has CommutativeRing
DifferentialRing if Coef has *: (Fraction Integer, Coef) -> Coef
DivisionRing if Coef has Field
ElementaryFunctionCategory if Coef has Algebra Fraction Integer
Eltable(%, %)
EntireRing if Coef has IntegralDomain
EuclideanDomain if Coef has Field
HyperbolicFunctionCategory if Coef has Algebra Fraction Integer
IndexedProductCategory(Coef, Fraction Integer)
IntegralDomain if Coef has IntegralDomain
LeftModule Coef
LeftModule Fraction Integer if Coef has Algebra Fraction Integer
LeftOreRing if Coef has Field
Module % if Coef has CommutativeRing
Module Coef if Coef has CommutativeRing
Module Fraction Integer if Coef has Algebra Fraction Integer
NonAssociativeAlgebra % if Coef has CommutativeRing
NonAssociativeAlgebra Coef if Coef has CommutativeRing
NonAssociativeAlgebra Fraction Integer if Coef has Algebra Fraction Integer
noZeroDivisors if Coef has IntegralDomain
PartialDifferentialRing Symbol if Coef has *: (Fraction Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
PowerSeriesCategory(Coef, Fraction Integer, SingletonAsOrderedSet)
PrincipalIdealDomain if Coef has Field
RadicalCategory if Coef has Algebra Fraction Integer
RightModule Coef
RightModule Fraction Integer if Coef has Algebra Fraction Integer
TranscendentalFunctionCategory if Coef has Algebra Fraction Integer
TrigonometricFunctionCategory if Coef has Algebra Fraction Integer
TwoSidedRecip if Coef has CommutativeRing
UniqueFactorizationDomain if Coef has Field
UnivariatePowerSeriesCategory(Coef, Fraction Integer)
UnivariateSeriesWithRationalExponents(Coef, Fraction Integer)