TaylorSeries CoefΒΆ
mts.spad line 310 [edit on github]
Coef: Ring
TaylorSeries is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from LeftModule %
- *: (%, Coef) -> %
from RightModule Coef
- *: (%, Fraction Integer) -> % if Coef has Algebra Fraction Integer
from RightModule Fraction Integer
- *: (Coef, %) -> %
from LeftModule Coef
- *: (Fraction Integer, %) -> % if Coef has Algebra Fraction Integer
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, Coef) -> % if Coef has Field
from AbelianMonoidRing(Coef, IndexedExponents Symbol)
- ^: (%, %) -> % if Coef has Algebra Fraction Integer
- ^: (%, Fraction Integer) -> % if Coef has Algebra Fraction Integer
from RadicalCategory
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean if Coef has IntegralDomain
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if Coef has CharacteristicNonZero
- coefficient: (%, IndexedExponents Symbol) -> Coef
from AbelianMonoidRing(Coef, IndexedExponents Symbol)
- coefficient: (%, List Symbol, List NonNegativeInteger) -> %
from MultivariateTaylorSeriesCategory(Coef, Symbol)
- coefficient: (%, NonNegativeInteger) -> Polynomial Coef
coefficient(s, n)
gives the terms of total degreen
.- coefficient: (%, Symbol, NonNegativeInteger) -> %
from MultivariateTaylorSeriesCategory(Coef, Symbol)
- coerce: % -> % if Coef has CommutativeRing
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Coef -> % if Coef has CommutativeRing
from Algebra Coef
- coerce: Fraction Integer -> % if Coef has Algebra Fraction Integer
- coerce: Integer -> %
from NonAssociativeRing
- coerce: Polynomial Coef -> %
coerce(s)
regroups terms ofs
by total degree and forms a series.
- coerce: Symbol -> %
coerce(s)
converts a variable to a Taylor series
- commutator: (%, %) -> %
from NonAssociativeRng
- complete: % -> %
from PowerSeriesCategory(Coef, IndexedExponents Symbol, Symbol)
- construct: List Record(k: IndexedExponents Symbol, c: Coef) -> %
from IndexedProductCategory(Coef, IndexedExponents Symbol)
- constructOrdered: List Record(k: IndexedExponents Symbol, c: Coef) -> %
from IndexedProductCategory(Coef, IndexedExponents Symbol)
- D: (%, List Symbol) -> %
- D: (%, List Symbol, List NonNegativeInteger) -> %
- D: (%, Symbol) -> %
- D: (%, Symbol, NonNegativeInteger) -> %
- degree: % -> IndexedExponents Symbol
from PowerSeriesCategory(Coef, IndexedExponents Symbol, Symbol)
- differentiate: (%, List Symbol) -> %
- differentiate: (%, List Symbol, List NonNegativeInteger) -> %
- differentiate: (%, Symbol) -> %
- differentiate: (%, Symbol, NonNegativeInteger) -> %
- eval: (%, %, %) -> %
from InnerEvalable(%, %)
- eval: (%, Equation %) -> %
from Evalable %
- eval: (%, List %, List %) -> %
from InnerEvalable(%, %)
- eval: (%, List Equation %) -> %
from Evalable %
- eval: (%, List Symbol, List %) -> %
from InnerEvalable(Symbol, %)
- eval: (%, Symbol, %) -> %
from InnerEvalable(Symbol, %)
- exquo: (%, %) -> Union(%, failed) if Coef has IntegralDomain
from EntireRing
- extend: (%, NonNegativeInteger) -> %
from MultivariateTaylorSeriesCategory(Coef, Symbol)
- fintegrate: (() -> %, Symbol, Coef) -> % if Coef has Algebra Fraction Integer
fintegrate(f, v, c)
is the integral off()
with respect tov
and havingc
as the constant of integration. The evaluation off()
is delayed.
- integrate: (%, Symbol) -> % if Coef has Algebra Fraction Integer
from MultivariateTaylorSeriesCategory(Coef, Symbol)
- integrate: (%, Symbol, Coef) -> % if Coef has Algebra Fraction Integer
integrate(s, v, c)
is the integral ofs
with respect tov
and havingc
as the constant of integration.
- latex: % -> String
from SetCategory
- leadingCoefficient: % -> Coef
from PowerSeriesCategory(Coef, IndexedExponents Symbol, Symbol)
- leadingMonomial: % -> %
from PowerSeriesCategory(Coef, IndexedExponents Symbol, Symbol)
- leadingSupport: % -> IndexedExponents Symbol
from IndexedProductCategory(Coef, IndexedExponents Symbol)
- leadingTerm: % -> Record(k: IndexedExponents Symbol, c: Coef)
from IndexedProductCategory(Coef, IndexedExponents Symbol)
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- map: (Coef -> Coef, %) -> %
from IndexedProductCategory(Coef, IndexedExponents Symbol)
- monomial?: % -> Boolean
from IndexedProductCategory(Coef, IndexedExponents Symbol)
- monomial: (%, List Symbol, List NonNegativeInteger) -> %
from MultivariateTaylorSeriesCategory(Coef, Symbol)
- monomial: (%, Symbol, NonNegativeInteger) -> %
from MultivariateTaylorSeriesCategory(Coef, Symbol)
- monomial: (Coef, IndexedExponents Symbol) -> %
from IndexedProductCategory(Coef, IndexedExponents Symbol)
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: (%, Symbol) -> NonNegativeInteger
from MultivariateTaylorSeriesCategory(Coef, Symbol)
- order: (%, Symbol, NonNegativeInteger) -> NonNegativeInteger
from MultivariateTaylorSeriesCategory(Coef, Symbol)
- plenaryPower: (%, PositiveInteger) -> % if Coef has CommutativeRing or Coef has Algebra Fraction Integer
from NonAssociativeAlgebra %
- pole?: % -> Boolean
from PowerSeriesCategory(Coef, IndexedExponents Symbol, Symbol)
- polynomial: (%, NonNegativeInteger) -> Polynomial Coef
from MultivariateTaylorSeriesCategory(Coef, Symbol)
- polynomial: (%, NonNegativeInteger, NonNegativeInteger) -> Polynomial Coef
from MultivariateTaylorSeriesCategory(Coef, Symbol)
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reductum: % -> %
from IndexedProductCategory(Coef, IndexedExponents Symbol)
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- sqrt: % -> % if Coef has Algebra Fraction Integer
from RadicalCategory
- subtractIfCan: (%, %) -> Union(%, failed)
- unit?: % -> Boolean if Coef has IntegralDomain
from EntireRing
- unitCanonical: % -> % if Coef has IntegralDomain
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if Coef has IntegralDomain
from EntireRing
- zero?: % -> Boolean
from AbelianMonoid
AbelianMonoidRing(Coef, IndexedExponents Symbol)
Algebra % if Coef has CommutativeRing
Algebra Coef if Coef has CommutativeRing
Algebra Fraction Integer if Coef has Algebra Fraction Integer
ArcHyperbolicFunctionCategory if Coef has Algebra Fraction Integer
ArcTrigonometricFunctionCategory if Coef has Algebra Fraction Integer
BiModule(%, %)
BiModule(Coef, Coef)
BiModule(Fraction Integer, Fraction Integer) if Coef has Algebra Fraction Integer
CharacteristicNonZero if Coef has CharacteristicNonZero
CharacteristicZero if Coef has CharacteristicZero
CommutativeRing if Coef has CommutativeRing
CommutativeStar if Coef has CommutativeRing
ElementaryFunctionCategory if Coef has Algebra Fraction Integer
EntireRing if Coef has IntegralDomain
Evalable %
HyperbolicFunctionCategory if Coef has Algebra Fraction Integer
IndexedProductCategory(Coef, IndexedExponents Symbol)
InnerEvalable(%, %)
InnerEvalable(Symbol, %)
IntegralDomain if Coef has IntegralDomain
LeftModule Coef
LeftModule Fraction Integer if Coef has Algebra Fraction Integer
Module % if Coef has CommutativeRing
Module Coef if Coef has CommutativeRing
Module Fraction Integer if Coef has Algebra Fraction Integer
MultivariateTaylorSeriesCategory(Coef, Symbol)
NonAssociativeAlgebra % if Coef has CommutativeRing
NonAssociativeAlgebra Coef if Coef has CommutativeRing
NonAssociativeAlgebra Fraction Integer if Coef has Algebra Fraction Integer
noZeroDivisors if Coef has IntegralDomain
PartialDifferentialRing Symbol
PowerSeriesCategory(Coef, IndexedExponents Symbol, Symbol)
RadicalCategory if Coef has Algebra Fraction Integer
RightModule Coef
RightModule Fraction Integer if Coef has Algebra Fraction Integer
TranscendentalFunctionCategory if Coef has Algebra Fraction Integer
TrigonometricFunctionCategory if Coef has Algebra Fraction Integer
TwoSidedRecip if Coef has CommutativeRing