SymmetricPolynomial RΒΆ
prtition.spad line 125 [edit on github]
R: Ring
This domain implements symmetric polynomial
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from LeftModule %
- *: (%, Fraction Integer) -> % if R has Algebra Fraction Integer
from RightModule Fraction Integer
- *: (%, R) -> %
from RightModule R
- *: (Fraction Integer, %) -> % if R has Algebra Fraction Integer
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, R) -> % if R has Field
from AbelianMonoidRing(R, Partition)
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean if R has EntireRing
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- binomThmExpt: (%, %, NonNegativeInteger) -> % if % has CommutativeRing
from FiniteAbelianMonoidRing(R, Partition)
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if R has CharacteristicNonZero
- coefficient: (%, Partition) -> R
from AbelianMonoidRing(R, Partition)
- coefficients: % -> List R
from FreeModuleCategory(R, Partition)
- coerce: % -> % if R has CommutativeRing
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Fraction Integer -> % if R has Algebra Fraction Integer or R has RetractableTo Fraction Integer
- coerce: Integer -> %
from NonAssociativeRing
- coerce: R -> %
from Algebra R
- commutator: (%, %) -> %
from NonAssociativeRng
- construct: List Record(k: Partition, c: R) -> %
from IndexedProductCategory(R, Partition)
- constructOrdered: List Record(k: Partition, c: R) -> %
from IndexedProductCategory(R, Partition)
- content: % -> R if R has GcdDomain
from FiniteAbelianMonoidRing(R, Partition)
- degree: % -> Partition
from AbelianMonoidRing(R, Partition)
- exquo: (%, %) -> Union(%, failed) if R has EntireRing
from EntireRing
- exquo: (%, R) -> Union(%, failed) if R has EntireRing
from FiniteAbelianMonoidRing(R, Partition)
- fmecg: (%, Partition, R, %) -> %
from FiniteAbelianMonoidRing(R, Partition)
- ground?: % -> Boolean
from FiniteAbelianMonoidRing(R, Partition)
- ground: % -> R
from FiniteAbelianMonoidRing(R, Partition)
- latex: % -> String
from SetCategory
- leadingCoefficient: % -> R
from IndexedProductCategory(R, Partition)
- leadingMonomial: % -> %
from IndexedProductCategory(R, Partition)
- leadingSupport: % -> Partition
from IndexedProductCategory(R, Partition)
- leadingTerm: % -> Record(k: Partition, c: R)
from IndexedProductCategory(R, Partition)
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- linearExtend: (Partition -> R, %) -> R if R has CommutativeRing
from FreeModuleCategory(R, Partition)
- listOfTerms: % -> List Record(k: Partition, c: R)
from IndexedDirectProductCategory(R, Partition)
- map: (R -> R, %) -> %
from IndexedProductCategory(R, Partition)
- mapExponents: (Partition -> Partition, %) -> %
from FiniteAbelianMonoidRing(R, Partition)
- minimumDegree: % -> Partition
from FiniteAbelianMonoidRing(R, Partition)
- monomial?: % -> Boolean
from IndexedProductCategory(R, Partition)
- monomial: (R, Partition) -> %
from IndexedProductCategory(R, Partition)
- monomials: % -> List %
from FreeModuleCategory(R, Partition)
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- plenaryPower: (%, PositiveInteger) -> % if R has CommutativeRing or R has Algebra Fraction Integer
from NonAssociativeAlgebra %
- pomopo!: (%, R, Partition, %) -> %
from FiniteAbelianMonoidRing(R, Partition)
- primitivePart: % -> % if R has GcdDomain
from FiniteAbelianMonoidRing(R, Partition)
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reductum: % -> %
from IndexedProductCategory(R, Partition)
- retract: % -> Fraction Integer if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer if R has RetractableTo Integer
from RetractableTo Integer
- retract: % -> R
from RetractableTo R
- retractIfCan: % -> Union(Fraction Integer, failed) if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed) if R has RetractableTo Integer
from RetractableTo Integer
- retractIfCan: % -> Union(R, failed)
from RetractableTo R
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- smaller?: (%, %) -> Boolean if R has Comparable
from Comparable
- subtractIfCan: (%, %) -> Union(%, failed)
- support: % -> List Partition
from FreeModuleCategory(R, Partition)
- unit?: % -> Boolean if R has EntireRing
from EntireRing
- unitCanonical: % -> % if R has EntireRing
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if R has EntireRing
from EntireRing
- zero?: % -> Boolean
from AbelianMonoid
AbelianMonoidRing(R, Partition)
Algebra % if R has CommutativeRing
Algebra Fraction Integer if R has Algebra Fraction Integer
Algebra R if R has CommutativeRing
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer) if R has Algebra Fraction Integer
BiModule(R, R)
canonicalUnitNormal if R has canonicalUnitNormal
CharacteristicNonZero if R has CharacteristicNonZero
CharacteristicZero if R has CharacteristicZero
CoercibleFrom Fraction Integer if R has RetractableTo Fraction Integer
CoercibleFrom Integer if R has RetractableTo Integer
CommutativeRing if R has CommutativeRing
CommutativeStar if R has CommutativeRing
Comparable if R has Comparable
EntireRing if R has EntireRing
FiniteAbelianMonoidRing(R, Partition)
FreeModuleCategory(R, Partition)
Hashable if Partition has Hashable and R has Hashable
IndexedDirectProductCategory(R, Partition)
IndexedProductCategory(R, Partition)
IntegralDomain if R has IntegralDomain
LeftModule Fraction Integer if R has Algebra Fraction Integer
Module % if R has CommutativeRing
Module Fraction Integer if R has Algebra Fraction Integer
Module R if R has CommutativeRing
NonAssociativeAlgebra % if R has CommutativeRing
NonAssociativeAlgebra Fraction Integer if R has Algebra Fraction Integer
NonAssociativeAlgebra R if R has CommutativeRing
noZeroDivisors if R has EntireRing
RetractableTo Fraction Integer if R has RetractableTo Fraction Integer
RetractableTo Integer if R has RetractableTo Integer
RightModule Fraction Integer if R has Algebra Fraction Integer
TwoSidedRecip if R has CommutativeRing