SparseMultivariateTaylorSeries(Coef, Var, SMP)¶
mts.spad line 1 [edit on github]
- Coef: Ring 
- Var: OrderedSet 
- SMP: PolynomialCategory(Coef, IndexedExponents Var, Var) 
This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain SMP. The nth element of the stream is a form of degree n. SMTS is an internal domain.
- 0: %
- from AbelianMonoid 
- 1: %
- from MagmaWithUnit 
- *: (%, %) -> %
- from Magma 
- *: (%, Coef) -> %
- from RightModule Coef 
- *: (%, Fraction Integer) -> % if Coef has Algebra Fraction Integer
- from RightModule Fraction Integer 
- *: (Coef, %) -> %
- from LeftModule Coef 
- *: (Fraction Integer, %) -> % if Coef has Algebra Fraction Integer
- from LeftModule Fraction Integer 
- *: (Integer, %) -> %
- from AbelianGroup 
- *: (NonNegativeInteger, %) -> %
- from AbelianMonoid 
- *: (PositiveInteger, %) -> %
- from AbelianSemiGroup 
- *: (SMP, %) -> %
- smp*tsmultiplies a TaylorSeries- tsby a monomial- smp.
- +: (%, %) -> %
- from AbelianSemiGroup 
- -: % -> %
- from AbelianGroup 
- -: (%, %) -> %
- from AbelianGroup 
- /: (%, Coef) -> % if Coef has Field
- from AbelianMonoidRing(Coef, IndexedExponents Var) 
- ^: (%, %) -> % if Coef has Algebra Fraction Integer
- ^: (%, Fraction Integer) -> % if Coef has Algebra Fraction Integer
- from RadicalCategory 
- ^: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- ^: (%, PositiveInteger) -> %
- from Magma 
- annihilate?: (%, %) -> Boolean
- from Rng 
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean if Coef has IntegralDomain
- from EntireRing 
- associator: (%, %, %) -> %
- from NonAssociativeRng 
- characteristic: () -> NonNegativeInteger
- from NonAssociativeRing 
- charthRoot: % -> Union(%, failed) if Coef has CharacteristicNonZero
- coefficient: (%, IndexedExponents Var) -> Coef
- from AbelianMonoidRing(Coef, IndexedExponents Var) 
- coefficient: (%, List Var, List NonNegativeInteger) -> %
- from MultivariateTaylorSeriesCategory(Coef, Var) 
- coefficient: (%, NonNegativeInteger) -> SMP
- coefficient(s, n)gives the terms of total degree- n.
- coefficient: (%, Var, NonNegativeInteger) -> %
- from MultivariateTaylorSeriesCategory(Coef, Var) 
- coefficients: % -> Stream SMP
- coefficients(s)gives stream of coefficients of- s, i.e. [coefficient(- s,0), coefficient(- s,1), …]
- coerce: % -> % if Coef has CommutativeRing
- from Algebra % 
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- coerce: Coef -> % if Coef has CommutativeRing
- from Algebra Coef 
- coerce: Fraction Integer -> % if Coef has Algebra Fraction Integer
- coerce: Integer -> %
- from NonAssociativeRing 
- coerce: SMP -> %
- coerce(poly)regroups the terms by total degree and forms a series.
- coerce: Var -> %
- coerce(var)converts a variable to a Taylor series
- commutator: (%, %) -> %
- from NonAssociativeRng 
- complete: % -> %
- from PowerSeriesCategory(Coef, IndexedExponents Var, Var) 
- construct: List Record(k: IndexedExponents Var, c: Coef) -> %
- from IndexedProductCategory(Coef, IndexedExponents Var) 
- constructOrdered: List Record(k: IndexedExponents Var, c: Coef) -> %
- from IndexedProductCategory(Coef, IndexedExponents Var) 
- D: (%, List Var) -> %
- from PartialDifferentialRing Var 
- D: (%, List Var, List NonNegativeInteger) -> %
- from PartialDifferentialRing Var 
- D: (%, Var) -> %
- from PartialDifferentialRing Var 
- D: (%, Var, NonNegativeInteger) -> %
- from PartialDifferentialRing Var 
- degree: % -> IndexedExponents Var
- from PowerSeriesCategory(Coef, IndexedExponents Var, Var) 
- differentiate: (%, List Var) -> %
- from PartialDifferentialRing Var 
- differentiate: (%, List Var, List NonNegativeInteger) -> %
- from PartialDifferentialRing Var 
- differentiate: (%, Var) -> %
- from PartialDifferentialRing Var 
- differentiate: (%, Var, NonNegativeInteger) -> %
- from PartialDifferentialRing Var 
- eval: (%, %, %) -> %
- from InnerEvalable(%, %) 
- eval: (%, Equation %) -> %
- from Evalable % 
- eval: (%, List %, List %) -> %
- from InnerEvalable(%, %) 
- eval: (%, List Equation %) -> %
- from Evalable % 
- eval: (%, List Var, List %) -> %
- from InnerEvalable(Var, %) 
- eval: (%, Var, %) -> %
- from InnerEvalable(Var, %) 
- exquo: (%, %) -> Union(%, failed) if Coef has IntegralDomain
- from EntireRing 
- extend: (%, NonNegativeInteger) -> %
- from MultivariateTaylorSeriesCategory(Coef, Var) 
- fintegrate: (() -> %, Var, Coef) -> % if Coef has Algebra Fraction Integer
- fintegrate(f, v, c)is the integral of- f()with respect to- vand having- cas the constant of integration. The evaluation of- f()is delayed.
- integrate: (%, Var) -> % if Coef has Algebra Fraction Integer
- from MultivariateTaylorSeriesCategory(Coef, Var) 
- integrate: (%, Var, Coef) -> % if Coef has Algebra Fraction Integer
- integrate(s, v, c)is the integral of- swith respect to- vand having- cas the constant of integration.
- latex: % -> String
- from SetCategory 
- leadingCoefficient: % -> Coef
- from PowerSeriesCategory(Coef, IndexedExponents Var, Var) 
- leadingMonomial: % -> %
- from PowerSeriesCategory(Coef, IndexedExponents Var, Var) 
- leadingSupport: % -> IndexedExponents Var
- from IndexedProductCategory(Coef, IndexedExponents Var) 
- leadingTerm: % -> Record(k: IndexedExponents Var, c: Coef)
- from IndexedProductCategory(Coef, IndexedExponents Var) 
- leftPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- leftPower: (%, PositiveInteger) -> %
- from Magma 
- leftRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- map: (Coef -> Coef, %) -> %
- from IndexedProductCategory(Coef, IndexedExponents Var) 
- monomial?: % -> Boolean
- from IndexedProductCategory(Coef, IndexedExponents Var) 
- monomial: (%, List Var, List NonNegativeInteger) -> %
- from MultivariateTaylorSeriesCategory(Coef, Var) 
- monomial: (%, Var, NonNegativeInteger) -> %
- from MultivariateTaylorSeriesCategory(Coef, Var) 
- monomial: (Coef, IndexedExponents Var) -> %
- from IndexedProductCategory(Coef, IndexedExponents Var) 
- one?: % -> Boolean
- from MagmaWithUnit 
- opposite?: (%, %) -> Boolean
- from AbelianMonoid 
- order: (%, Var) -> NonNegativeInteger
- from MultivariateTaylorSeriesCategory(Coef, Var) 
- order: (%, Var, NonNegativeInteger) -> NonNegativeInteger
- from MultivariateTaylorSeriesCategory(Coef, Var) 
- plenaryPower: (%, PositiveInteger) -> % if Coef has CommutativeRing or Coef has Algebra Fraction Integer
- from NonAssociativeAlgebra Coef 
- pole?: % -> Boolean
- from PowerSeriesCategory(Coef, IndexedExponents Var, Var) 
- polynomial: (%, NonNegativeInteger) -> Polynomial Coef
- from MultivariateTaylorSeriesCategory(Coef, Var) 
- polynomial: (%, NonNegativeInteger, NonNegativeInteger) -> Polynomial Coef
- from MultivariateTaylorSeriesCategory(Coef, Var) 
- recip: % -> Union(%, failed)
- from MagmaWithUnit 
- reductum: % -> %
- from IndexedProductCategory(Coef, IndexedExponents Var) 
- rightPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- rightPower: (%, PositiveInteger) -> %
- from Magma 
- rightRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- sample: %
- from AbelianMonoid 
- series: Stream SMP -> %
- series(st)creates a series from a stream of coefficients.
- sqrt: % -> % if Coef has Algebra Fraction Integer
- from RadicalCategory 
- subtractIfCan: (%, %) -> Union(%, failed)
- unit?: % -> Boolean if Coef has IntegralDomain
- from EntireRing 
- unitCanonical: % -> % if Coef has IntegralDomain
- from EntireRing 
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if Coef has IntegralDomain
- from EntireRing 
- zero?: % -> Boolean
- from AbelianMonoid 
AbelianMonoidRing(Coef, IndexedExponents Var)
Algebra % if Coef has CommutativeRing
Algebra Coef if Coef has CommutativeRing
Algebra Fraction Integer if Coef has Algebra Fraction Integer
ArcHyperbolicFunctionCategory if Coef has Algebra Fraction Integer
ArcTrigonometricFunctionCategory if Coef has Algebra Fraction Integer
BiModule(%, %)
BiModule(Coef, Coef)
BiModule(Fraction Integer, Fraction Integer) if Coef has Algebra Fraction Integer
CharacteristicNonZero if Coef has CharacteristicNonZero
CharacteristicZero if Coef has CharacteristicZero
CommutativeRing if Coef has CommutativeRing
CommutativeStar if Coef has CommutativeRing
ElementaryFunctionCategory if Coef has Algebra Fraction Integer
EntireRing if Coef has IntegralDomain
Evalable %
HyperbolicFunctionCategory if Coef has Algebra Fraction Integer
IndexedProductCategory(Coef, IndexedExponents Var)
InnerEvalable(%, %)
InnerEvalable(Var, %)
IntegralDomain if Coef has IntegralDomain
LeftModule Coef
LeftModule Fraction Integer if Coef has Algebra Fraction Integer
Module % if Coef has CommutativeRing
Module Coef if Coef has CommutativeRing
Module Fraction Integer if Coef has Algebra Fraction Integer
MultivariateTaylorSeriesCategory(Coef, Var)
NonAssociativeAlgebra % if Coef has CommutativeRing
NonAssociativeAlgebra Coef if Coef has CommutativeRing
NonAssociativeAlgebra Fraction Integer if Coef has Algebra Fraction Integer
noZeroDivisors if Coef has IntegralDomain
PowerSeriesCategory(Coef, IndexedExponents Var, Var)
RadicalCategory if Coef has Algebra Fraction Integer
RightModule Coef
RightModule Fraction Integer if Coef has Algebra Fraction Integer
TranscendentalFunctionCategory if Coef has Algebra Fraction Integer
TrigonometricFunctionCategory if Coef has Algebra Fraction Integer
TwoSidedRecip if Coef has CommutativeRing