FiniteRankAlgebra(R, UP)ΒΆ
algcat.spad line 70 [edit on github]
A FiniteRankAlgebra is an algebra over a commutative ring R
which is a free R
-module of finite rank.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, R) -> %
from RightModule R
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associator: (%, %, %) -> %
from NonAssociativeRng
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- characteristicPolynomial: % -> UP
characteristicPolynomial(a)
returns the characteristic polynomial of the regular representation ofa
with respect to any basis.
- charthRoot: % -> Union(%, failed) if R has CharacteristicNonZero
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Integer -> %
from NonAssociativeRing
- coerce: R -> %
from Algebra R
- commutator: (%, %) -> %
from NonAssociativeRng
- coordinates: (%, Vector %) -> Vector R
coordinates(a, basis)
returns the coordinates ofa
with respect to the basisbasis
.
- coordinates: (Vector %, Vector %) -> Matrix R
coordinates([v1, ..., vm], basis)
returns the coordinates of thevi
's
with to the basisbasis
. The coordinates ofvi
are contained in thei
th row of the matrix returned by this function.
- discriminant: Vector % -> R
discriminant([v1, .., vn])
returnsdeterminant(traceMatrix([v1, .., vn]))
.
- latex: % -> String
from SetCategory
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- minimalPolynomial: % -> UP if R has Field
minimalPolynomial(a)
returns the minimal polynomial ofa
.
- norm: % -> R
norm(a)
returns the determinant of the regular representation ofa
with respect to any basis.
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- plenaryPower: (%, PositiveInteger) -> %
from NonAssociativeAlgebra R
- rank: () -> PositiveInteger
rank()
returns the rank of the algebra.
- recip: % -> Union(%, failed)
from MagmaWithUnit
- regularRepresentation: (%, Vector %) -> Matrix R
regularRepresentation(a, basis)
returns the matrixm
of the linear map defined by left multiplication bya
with respect to the basisbasis
. That is for allx
we havecoordinates(a*x, basis) = m*coordinates(x, basis)
.
- represents: (Vector R, Vector %) -> %
represents([a1, .., an], [v1, .., vn])
returnsa1*v1 + ... + an*vn
.
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- subtractIfCan: (%, %) -> Union(%, failed)
- trace: % -> R
trace(a)
returns the trace of the regular representation ofa
with respect to any basis.
- zero?: % -> Boolean
from AbelianMonoid
Algebra R
BiModule(%, %)
BiModule(R, R)
CharacteristicNonZero if R has CharacteristicNonZero
CharacteristicZero if R has CharacteristicZero
Module R