FiniteFieldCategory¶

ffcat.spad line 426 [edit on github]

FiniteFieldCategory is the category of finite fields

0: %

from AbelianMonoid

1: %

from MagmaWithUnit

*: (%, %) -> %

from LeftModule %

*: (%, Fraction Integer) -> %

from RightModule Fraction Integer

*: (Fraction Integer, %) -> %

from LeftModule Fraction Integer

*: (Integer, %) -> %

from AbelianGroup

*: (NonNegativeInteger, %) -> %

from AbelianMonoid

*: (PositiveInteger, %) -> %

from AbelianSemiGroup

+: (%, %) -> %

from AbelianSemiGroup

-: % -> %

from AbelianGroup

-: (%, %) -> %

from AbelianGroup

/: (%, %) -> %

from Field

=: (%, %) -> Boolean

from BasicType

^: (%, Integer) -> %

from DivisionRing

^: (%, NonNegativeInteger) -> %

from MagmaWithUnit

^: (%, PositiveInteger) -> %

from Magma

~=: (%, %) -> Boolean

from BasicType

annihilate?: (%, %) -> Boolean

from Rng

antiCommutator: (%, %) -> %

from NonAssociativeSemiRng

associates?: (%, %) -> Boolean

from EntireRing

associator: (%, %, %) -> %

from NonAssociativeRng

characteristic: () -> NonNegativeInteger

from NonAssociativeRing

charthRoot: % -> %

charthRoot(a) takes the characteristic’th root of a. Note: such a root is alway defined in finite fields.

charthRoot: % -> Union(%, failed)

from PolynomialFactorizationExplicit

coerce: % -> %

from Algebra %

coerce: % -> OutputForm

from CoercibleTo OutputForm

coerce: Fraction Integer -> %

from Algebra Fraction Integer

coerce: Integer -> %

from NonAssociativeRing

commutator: (%, %) -> %

from NonAssociativeRng

conditionP: Matrix % -> Union(Vector %, failed)

from PolynomialFactorizationExplicit

convert: % -> InputForm

from ConvertibleTo InputForm

createPrimitiveElement: () -> %

createPrimitiveElement() computes a generator of the (cyclic) multiplicative group of the field.

D: % -> %

from DifferentialRing

D: (%, NonNegativeInteger) -> %

from DifferentialRing

differentiate: % -> %

from DifferentialRing

differentiate: (%, NonNegativeInteger) -> %

from DifferentialRing

discreteLog: % -> NonNegativeInteger

discreteLog(a) computes the discrete logarithm of a with respect to primitiveElement() of the field.

discreteLog: (%, %) -> Union(NonNegativeInteger, failed)

from FieldOfPrimeCharacteristic

divide: (%, %) -> Record(quotient: %, remainder: %)

from EuclideanDomain

enumerate: () -> List %

from Finite

euclideanSize: % -> NonNegativeInteger

from EuclideanDomain

expressIdealMember: (List %, %) -> Union(List %, failed)

from PrincipalIdealDomain

exquo: (%, %) -> Union(%, failed)

from EntireRing

extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)

from EuclideanDomain

extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)

from EuclideanDomain

factor: % -> Factored %

from UniqueFactorizationDomain

factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial %

from PolynomialFactorizationExplicit

factorsOfCyclicGroupSize: () -> List Record(factor: Integer, exponent: NonNegativeInteger)

factorsOfCyclicGroupSize() returns the factorization of size()-1

factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial %

from PolynomialFactorizationExplicit

gcd: (%, %) -> %

from GcdDomain

gcd: List % -> %

from GcdDomain

gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %

from PolynomialFactorizationExplicit

hash: % -> SingleInteger

from Hashable

hashUpdate!: (HashState, %) -> HashState

from Hashable

index: PositiveInteger -> %

from Finite

init: %

from StepThrough

inv: % -> %

from DivisionRing

latex: % -> String

from SetCategory

lcm: (%, %) -> %

from GcdDomain

lcm: List % -> %

from GcdDomain

lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)

from LeftOreRing

leftPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

leftPower: (%, PositiveInteger) -> %

from Magma

leftRecip: % -> Union(%, failed)

from MagmaWithUnit

lookup: % -> PositiveInteger

from Finite

multiEuclidean: (List %, %) -> Union(List %, failed)

from EuclideanDomain

nextItem: % -> Union(%, failed)

from StepThrough

one?: % -> Boolean

from MagmaWithUnit

opposite?: (%, %) -> Boolean

from AbelianMonoid

order: % -> OnePointCompletion PositiveInteger

from FieldOfPrimeCharacteristic

order: % -> PositiveInteger

order(b) computes the order of an element b in the multiplicative group of the field. Error: if b equals 0.

plenaryPower: (%, PositiveInteger) -> %

from NonAssociativeAlgebra %

prime?: % -> Boolean

from UniqueFactorizationDomain

primeFrobenius: % -> %

from FieldOfPrimeCharacteristic

primeFrobenius: (%, NonNegativeInteger) -> %

from FieldOfPrimeCharacteristic

primitive?: % -> Boolean

primitive?(b) tests whether the element b is a generator of the (cyclic) multiplicative group of the field, i.e. is a primitive element. Implementation Note: see ch.IX.1.3, th.2 in D. Lipson.

primitiveElement: () -> %

primitiveElement() returns a primitive element stored in a global variable in the domain. At first call, the primitive element is computed by calling createPrimitiveElement.

principalIdeal: List % -> Record(coef: List %, generator: %)

from PrincipalIdealDomain

quo: (%, %) -> %

from EuclideanDomain

random: () -> %

from Finite

recip: % -> Union(%, failed)

from MagmaWithUnit

rem: (%, %) -> %

from EuclideanDomain

representationType: () -> Union(prime, polynomial, normal, cyclic)

representationType() returns the type of the representation, one of: prime, polynomial, normal, or cyclic.

rightPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

rightPower: (%, PositiveInteger) -> %

from Magma

rightRecip: % -> Union(%, failed)

from MagmaWithUnit

sample: %

from AbelianMonoid

size: () -> NonNegativeInteger

from Finite

sizeLess?: (%, %) -> Boolean

from EuclideanDomain

smaller?: (%, %) -> Boolean

from Comparable

solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed)

from PolynomialFactorizationExplicit

squareFree: % -> Factored %

from UniqueFactorizationDomain

squareFreePart: % -> %

from UniqueFactorizationDomain

squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial %

from PolynomialFactorizationExplicit

subtractIfCan: (%, %) -> Union(%, failed)

from CancellationAbelianMonoid

tableForDiscreteLogarithm: Integer -> Table(PositiveInteger, NonNegativeInteger)

tableForDiscreteLogarithm(a, n) returns a table of the discrete logarithms of a^0 up to a^(n-1) which, called with key lookup(a^i) returns i for i in 0..n-1. Error: if not called for prime divisors of order of multiplicative group.

unit?: % -> Boolean

from EntireRing

unitCanonical: % -> %

from EntireRing

unitNormal: % -> Record(unit: %, canonical: %, associate: %)

from EntireRing

zero?: % -> Boolean

from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianSemiGroup

Algebra %

Algebra Fraction Integer

BasicType

BiModule(%, %)

BiModule(Fraction Integer, Fraction Integer)

CancellationAbelianMonoid

canonicalsClosed

canonicalUnitNormal

CharacteristicNonZero

CoercibleTo OutputForm

CommutativeRing

CommutativeStar

Comparable

ConvertibleTo InputForm

DifferentialRing

DivisionRing

EntireRing

EuclideanDomain

Field

FieldOfPrimeCharacteristic

Finite

GcdDomain

Hashable

IntegralDomain

LeftModule %

LeftModule Fraction Integer

LeftOreRing

Magma

MagmaWithUnit

Module %

Module Fraction Integer

Monoid

NonAssociativeAlgebra %

NonAssociativeAlgebra Fraction Integer

NonAssociativeRing

NonAssociativeRng

NonAssociativeSemiRing

NonAssociativeSemiRng

noZeroDivisors

PolynomialFactorizationExplicit

PrincipalIdealDomain

RightModule %

RightModule Fraction Integer

Ring

Rng

SemiGroup

SemiRing

SemiRng

SetCategory

StepThrough

TwoSidedRecip

UniqueFactorizationDomain

unitsKnown