AntiSymm(R, lVar)ΒΆ
derham.spad line 94 [edit on github]
The domain of antisymmetric polynomials.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from LeftModule %
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associator: (%, %, %) -> %
from NonAssociativeRng
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- coefficient: (%, %) -> R
coefficient(p, u)
returns the coefficient of the term inp
containing the basis termu
if such a term exists, and 0 otherwise. Error: if the second argumentu
is not a basis element.
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Integer -> %
from NonAssociativeRing
- coerce: R -> %
from LeftAlgebra R
- commutator: (%, %) -> %
from NonAssociativeRng
- degree: % -> NonNegativeInteger
degree(p)
returns the homogeneous degree ofp
.
- generator: NonNegativeInteger -> %
generator(n)
returns then
th multiplicative generator, a basis term.
- homogeneous?: % -> Boolean
homogeneous?(p)
tests if all of the terms ofp
have the same degree.
- latex: % -> String
from SetCategory
- leadingBasisTerm: % -> %
leadingBasisTerm(p)
returns the leading basis term of antisymmetric polynomialp
.
- leadingCoefficient: % -> R
leadingCoefficient(p)
returns the leading coefficient of antisymmetric polynomialp
.
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- map: (R -> R, %) -> %
map(f, p)
changes each coefficient ofp
by the application off
.
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reductum: % -> %
reductum(p)
, wherep
is an antisymmetric polynomial, returnsp
minus the leading term ofp
ifp
has at least two terms, and 0 otherwise.
- retract: % -> R
from RetractableTo R
- retractable?: % -> Boolean
retractable?(p)
tests ifp
is a 0-form, i.e. if degree(p
) = 0.
- retractIfCan: % -> Union(R, failed)
from RetractableTo R
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- subtractIfCan: (%, %) -> Union(%, failed)
- zero?: % -> Boolean
from AbelianMonoid
BiModule(%, %)