SquareFreeRegularTriangularSetCategory(R, E, V, P)ΒΆ
sregset.spad line 1 [edit on github]
- R: GcdDomain 
- V: OrderedSet 
- P: RecursivePolynomialCategory(R, E, V) 
The category of square-free regular triangular sets. A regular triangular set ts is square-free if the gcd of any polynomial p in ts and differentiate(p, mvar(p)) with respect to collectUnder(ts, mvar(p)) has degree zero with respect to mvar(p). Thus any square-free regular set defines a tower of square-free simple extensions.
- #: % -> NonNegativeInteger
- from Aggregate 
- algebraic?: (V, %) -> Boolean
- from TriangularSetCategory(R, E, V, P) 
- algebraicCoefficients?: (P, %) -> Boolean
- from RegularTriangularSetCategory(R, E, V, P) 
- algebraicVariables: % -> List V
- from TriangularSetCategory(R, E, V, P) 
- any?: (P -> Boolean, %) -> Boolean
- from HomogeneousAggregate P 
- augment: (List P, %) -> List %
- from RegularTriangularSetCategory(R, E, V, P) 
- augment: (List P, List %) -> List %
- from RegularTriangularSetCategory(R, E, V, P) 
- augment: (P, %) -> List %
- from RegularTriangularSetCategory(R, E, V, P) 
- augment: (P, List %) -> List %
- from RegularTriangularSetCategory(R, E, V, P) 
- autoReduced?: (%, (P, List P) -> Boolean) -> Boolean
- from TriangularSetCategory(R, E, V, P) 
- basicSet: (List P, (P, P) -> Boolean) -> Union(Record(bas: %, top: List P), failed)
- from TriangularSetCategory(R, E, V, P) 
- basicSet: (List P, P -> Boolean, (P, P) -> Boolean) -> Union(Record(bas: %, top: List P), failed)
- from TriangularSetCategory(R, E, V, P) 
- coerce: % -> List P
- from CoercibleTo List P 
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- coHeight: % -> NonNegativeInteger if V has Finite
- from TriangularSetCategory(R, E, V, P) 
- collect: (%, V) -> %
- from PolynomialSetCategory(R, E, V, P) 
- collectQuasiMonic: % -> %
- from TriangularSetCategory(R, E, V, P) 
- collectUnder: (%, V) -> %
- from PolynomialSetCategory(R, E, V, P) 
- collectUpper: (%, V) -> %
- from PolynomialSetCategory(R, E, V, P) 
- construct: List P -> %
- from Collection P 
- convert: % -> InputForm
- from ConvertibleTo InputForm 
- count: (P -> Boolean, %) -> NonNegativeInteger
- from HomogeneousAggregate P 
- count: (P, %) -> NonNegativeInteger
- from HomogeneousAggregate P 
- degree: % -> NonNegativeInteger
- from TriangularSetCategory(R, E, V, P) 
- eval: (%, Equation P) -> % if P has Evalable P
- from Evalable P 
- eval: (%, List Equation P) -> % if P has Evalable P
- from Evalable P 
- eval: (%, List P, List P) -> % if P has Evalable P
- from InnerEvalable(P, P) 
- eval: (%, P, P) -> % if P has Evalable P
- from InnerEvalable(P, P) 
- every?: (P -> Boolean, %) -> Boolean
- from HomogeneousAggregate P 
- extend: (%, P) -> %
- from TriangularSetCategory(R, E, V, P) 
- extend: (List P, %) -> List %
- from RegularTriangularSetCategory(R, E, V, P) 
- extend: (List P, List %) -> List %
- from RegularTriangularSetCategory(R, E, V, P) 
- extend: (P, %) -> List %
- from RegularTriangularSetCategory(R, E, V, P) 
- extend: (P, List %) -> List %
- from RegularTriangularSetCategory(R, E, V, P) 
- extendIfCan: (%, P) -> Union(%, failed)
- from TriangularSetCategory(R, E, V, P) 
- find: (P -> Boolean, %) -> Union(P, failed)
- from Collection P 
- first: % -> Union(P, failed)
- from TriangularSetCategory(R, E, V, P) 
- headReduce: (P, %) -> P
- from TriangularSetCategory(R, E, V, P) 
- headReduced?: % -> Boolean
- from TriangularSetCategory(R, E, V, P) 
- headReduced?: (P, %) -> Boolean
- from TriangularSetCategory(R, E, V, P) 
- headRemainder: (P, %) -> Record(num: P, den: R)
- from PolynomialSetCategory(R, E, V, P) 
- iexactQuo: (R, R) -> R
- from PolynomialSetCategory(R, E, V, P) 
- infRittWu?: (%, %) -> Boolean
- from TriangularSetCategory(R, E, V, P) 
- initiallyReduce: (P, %) -> P
- from TriangularSetCategory(R, E, V, P) 
- initiallyReduced?: % -> Boolean
- from TriangularSetCategory(R, E, V, P) 
- initiallyReduced?: (P, %) -> Boolean
- from TriangularSetCategory(R, E, V, P) 
- initials: % -> List P
- from TriangularSetCategory(R, E, V, P) 
- internalAugment: (List P, %) -> %
- from RegularTriangularSetCategory(R, E, V, P) 
- internalAugment: (P, %) -> %
- from RegularTriangularSetCategory(R, E, V, P) 
- intersect: (List P, %) -> List %
- from RegularTriangularSetCategory(R, E, V, P) 
- intersect: (List P, List %) -> List %
- from RegularTriangularSetCategory(R, E, V, P) 
- intersect: (P, %) -> List %
- from RegularTriangularSetCategory(R, E, V, P) 
- intersect: (P, List %) -> List %
- from RegularTriangularSetCategory(R, E, V, P) 
- invertible?: (P, %) -> Boolean
- from RegularTriangularSetCategory(R, E, V, P) 
- invertible?: (P, %) -> List Record(val: Boolean, tower: %)
- from RegularTriangularSetCategory(R, E, V, P) 
- invertibleElseSplit?: (P, %) -> Union(Boolean, List %)
- from RegularTriangularSetCategory(R, E, V, P) 
- invertibleSet: (P, %) -> List %
- from RegularTriangularSetCategory(R, E, V, P) 
- last: % -> Union(P, failed)
- from TriangularSetCategory(R, E, V, P) 
- lastSubResultant: (P, P, %) -> List Record(val: P, tower: %)
- from RegularTriangularSetCategory(R, E, V, P) 
- lastSubResultantElseSplit: (P, P, %) -> Union(P, List %)
- from RegularTriangularSetCategory(R, E, V, P) 
- latex: % -> String
- from SetCategory 
- less?: (%, NonNegativeInteger) -> Boolean
- from Aggregate 
- mainVariable?: (V, %) -> Boolean
- from PolynomialSetCategory(R, E, V, P) 
- mainVariables: % -> List V
- from PolynomialSetCategory(R, E, V, P) 
- map!: (P -> P, %) -> %
- from HomogeneousAggregate P 
- map: (P -> P, %) -> %
- from HomogeneousAggregate P 
- max: % -> P if P has OrderedSet
- from HomogeneousAggregate P 
- max: ((P, P) -> Boolean, %) -> P
- from HomogeneousAggregate P 
- member?: (P, %) -> Boolean
- from HomogeneousAggregate P 
- members: % -> List P
- from HomogeneousAggregate P 
- min: % -> P if P has OrderedSet
- from HomogeneousAggregate P 
- more?: (%, NonNegativeInteger) -> Boolean
- from Aggregate 
- mvar: % -> V
- from PolynomialSetCategory(R, E, V, P) 
- normalized?: % -> Boolean
- from TriangularSetCategory(R, E, V, P) 
- normalized?: (P, %) -> Boolean
- from TriangularSetCategory(R, E, V, P) 
- parts: % -> List P
- from HomogeneousAggregate P 
- purelyAlgebraic?: % -> Boolean
- from RegularTriangularSetCategory(R, E, V, P) 
- purelyAlgebraic?: (P, %) -> Boolean
- from RegularTriangularSetCategory(R, E, V, P) 
- purelyAlgebraicLeadingMonomial?: (P, %) -> Boolean
- from RegularTriangularSetCategory(R, E, V, P) 
- purelyTranscendental?: (P, %) -> Boolean
- from RegularTriangularSetCategory(R, E, V, P) 
- quasiComponent: % -> Record(close: List P, open: List P)
- from TriangularSetCategory(R, E, V, P) 
- reduce: ((P, P) -> P, %) -> P
- from Collection P 
- reduce: ((P, P) -> P, %, P) -> P
- from Collection P 
- reduce: ((P, P) -> P, %, P, P) -> P
- from Collection P 
- reduce: (P, %, (P, P) -> P, (P, P) -> Boolean) -> P
- from TriangularSetCategory(R, E, V, P) 
- reduceByQuasiMonic: (P, %) -> P
- from TriangularSetCategory(R, E, V, P) 
- reduced?: (P, %, (P, P) -> Boolean) -> Boolean
- from TriangularSetCategory(R, E, V, P) 
- remainder: (P, %) -> Record(rnum: R, polnum: P, den: R)
- from PolynomialSetCategory(R, E, V, P) 
- remove: (P -> Boolean, %) -> %
- from Collection P 
- remove: (P, %) -> %
- from Collection P 
- removeDuplicates: % -> %
- from Collection P 
- removeZero: (P, %) -> P
- from TriangularSetCategory(R, E, V, P) 
- rest: % -> Union(%, failed)
- from TriangularSetCategory(R, E, V, P) 
- retract: List P -> %
- from RetractableFrom List P 
- retractIfCan: List P -> Union(%, failed)
- from RetractableFrom List P 
- rewriteIdealWithHeadRemainder: (List P, %) -> List P
- from PolynomialSetCategory(R, E, V, P) 
- rewriteIdealWithRemainder: (List P, %) -> List P
- from PolynomialSetCategory(R, E, V, P) 
- rewriteSetWithReduction: (List P, %, (P, P) -> P, (P, P) -> Boolean) -> List P
- from TriangularSetCategory(R, E, V, P) 
- roughBase?: % -> Boolean
- from PolynomialSetCategory(R, E, V, P) 
- roughEqualIdeals?: (%, %) -> Boolean
- from PolynomialSetCategory(R, E, V, P) 
- roughSubIdeal?: (%, %) -> Boolean
- from PolynomialSetCategory(R, E, V, P) 
- roughUnitIdeal?: % -> Boolean
- from PolynomialSetCategory(R, E, V, P) 
- select: (%, V) -> Union(P, failed)
- from TriangularSetCategory(R, E, V, P) 
- select: (P -> Boolean, %) -> %
- from Collection P 
- size?: (%, NonNegativeInteger) -> Boolean
- from Aggregate 
- sort: (%, V) -> Record(under: %, floor: %, upper: %)
- from PolynomialSetCategory(R, E, V, P) 
- squareFreePart: (P, %) -> List Record(val: P, tower: %)
- from RegularTriangularSetCategory(R, E, V, P) 
- stronglyReduce: (P, %) -> P
- from TriangularSetCategory(R, E, V, P) 
- stronglyReduced?: % -> Boolean
- from TriangularSetCategory(R, E, V, P) 
- stronglyReduced?: (P, %) -> Boolean
- from TriangularSetCategory(R, E, V, P) 
- triangular?: % -> Boolean
- from PolynomialSetCategory(R, E, V, P) 
- trivialIdeal?: % -> Boolean
- from PolynomialSetCategory(R, E, V, P) 
- variables: % -> List V
- from PolynomialSetCategory(R, E, V, P) 
- zeroSetSplit: (List P, Boolean) -> List %
- from RegularTriangularSetCategory(R, E, V, P) 
- zeroSetSplit: List P -> List %
- from TriangularSetCategory(R, E, V, P) 
- zeroSetSplitIntoTriangularSystems: List P -> List Record(close: %, open: List P)
- from TriangularSetCategory(R, E, V, P) 
Evalable P if P has Evalable P
InnerEvalable(P, P) if P has Evalable P
PolynomialSetCategory(R, E, V, P)
RegularTriangularSetCategory(R, E, V, P)
TriangularSetCategory(R, E, V, P)