PointCategory RΒΆ
newpoint.spad line 1 [edit on github]
R: Ring
PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.
- #: % -> NonNegativeInteger
from Aggregate
- *: (%, R) -> %
from VectorCategory R
- *: (Integer, %) -> %
from VectorCategory R
- *: (R, %) -> %
from VectorCategory R
- +: (%, %) -> %
from VectorCategory R
- -: % -> %
from VectorCategory R
- -: (%, %) -> %
from VectorCategory R
- <=: (%, %) -> Boolean if R has OrderedSet
from PartialOrder
- <: (%, %) -> Boolean if R has OrderedSet
from PartialOrder
- >=: (%, %) -> Boolean if R has OrderedSet
from PartialOrder
- >: (%, %) -> Boolean if R has OrderedSet
from PartialOrder
- any?: (R -> Boolean, %) -> Boolean
from HomogeneousAggregate R
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- concat: (%, %) -> %
from LinearAggregate R
- concat: (%, R) -> %
from LinearAggregate R
- concat: (R, %) -> %
from LinearAggregate R
- concat: List % -> %
from LinearAggregate R
- construct: List R -> %
from Collection R
- convert: % -> InputForm if R has ConvertibleTo InputForm
from ConvertibleTo InputForm
- convert: List R -> %
convert(l)
takes a list of elements,l
, from the domain Ring and returns the form of point category.
- copyInto!: (%, %, Integer) -> %
from LinearAggregate R
- count: (R -> Boolean, %) -> NonNegativeInteger
from HomogeneousAggregate R
- count: (R, %) -> NonNegativeInteger
from HomogeneousAggregate R
- cross: (%, %) -> %
cross(p, q)
computes the cross product of the two pointsp
andq
. Error if thep
andq
are not 3 dimensional
- delete: (%, Integer) -> %
from LinearAggregate R
- delete: (%, UniversalSegment Integer) -> %
from LinearAggregate R
- dimension: % -> PositiveInteger
dimension(s)
returns the dimension of the point categorys
.
- dot: (%, %) -> R
from VectorCategory R
- elt: (%, Integer) -> R
- elt: (%, Integer, R) -> R
from EltableAggregate(Integer, R)
- elt: (%, UniversalSegment Integer) -> %
from Eltable(UniversalSegment Integer, %)
- entries: % -> List R
from IndexedAggregate(Integer, R)
- entry?: (R, %) -> Boolean
from IndexedAggregate(Integer, R)
- eval: (%, Equation R) -> % if R has Evalable R
from Evalable R
- eval: (%, List Equation R) -> % if R has Evalable R
from Evalable R
- eval: (%, List R, List R) -> % if R has Evalable R
from InnerEvalable(R, R)
- eval: (%, R, R) -> % if R has Evalable R
from InnerEvalable(R, R)
- every?: (R -> Boolean, %) -> Boolean
from HomogeneousAggregate R
- extend: (%, List R) -> %
extend(x, l, r)
undocumented
- fill!: (%, R) -> %
from IndexedAggregate(Integer, R)
- find: (R -> Boolean, %) -> Union(R, failed)
from Collection R
- first: % -> R
from IndexedAggregate(Integer, R)
- first: (%, NonNegativeInteger) -> %
from LinearAggregate R
- hash: % -> SingleInteger if R has Hashable
from Hashable
- hashUpdate!: (HashState, %) -> HashState if R has Hashable
from Hashable
- index?: (Integer, %) -> Boolean
from IndexedAggregate(Integer, R)
- indices: % -> List Integer
from IndexedAggregate(Integer, R)
- insert: (%, %, Integer) -> %
from LinearAggregate R
- insert: (R, %, Integer) -> %
from LinearAggregate R
- latex: % -> String
from SetCategory
- leftTrim: (%, R) -> %
from LinearAggregate R
- length: % -> R if R has RadicalCategory
from VectorCategory R
- less?: (%, NonNegativeInteger) -> Boolean
from Aggregate
- map!: (R -> R, %) -> %
from HomogeneousAggregate R
- map: ((R, R) -> R, %, %) -> %
from LinearAggregate R
- map: (R -> R, %) -> %
from HomogeneousAggregate R
- max: % -> R if R has OrderedSet
from HomogeneousAggregate R
- max: (%, %) -> % if R has OrderedSet
from OrderedSet
- max: ((R, R) -> Boolean, %) -> R
from HomogeneousAggregate R
- maxIndex: % -> Integer
from IndexedAggregate(Integer, R)
- member?: (R, %) -> Boolean
from HomogeneousAggregate R
- members: % -> List R
from HomogeneousAggregate R
- merge: (%, %) -> % if R has OrderedSet
from LinearAggregate R
- merge: ((R, R) -> Boolean, %, %) -> %
from LinearAggregate R
- min: % -> R if R has OrderedSet
from HomogeneousAggregate R
- min: (%, %) -> % if R has OrderedSet
from OrderedSet
- minIndex: % -> Integer
from IndexedAggregate(Integer, R)
- more?: (%, NonNegativeInteger) -> Boolean
from Aggregate
- new: (NonNegativeInteger, R) -> %
from LinearAggregate R
- outerProduct: (%, %) -> Matrix R
from VectorCategory R
- parts: % -> List R
from HomogeneousAggregate R
- point: List R -> %
point(l)
returns a point category defined by a listl
of elements from the domainR
.
- position: (R -> Boolean, %) -> Integer
from LinearAggregate R
- position: (R, %) -> Integer
from LinearAggregate R
- position: (R, %, Integer) -> Integer
from LinearAggregate R
- qelt: (%, Integer) -> R
from EltableAggregate(Integer, R)
- qsetelt!: (%, Integer, R) -> R
from EltableAggregate(Integer, R)
- reduce: ((R, R) -> R, %) -> R
from Collection R
- reduce: ((R, R) -> R, %, R) -> R
from Collection R
- reduce: ((R, R) -> R, %, R, R) -> R
from Collection R
- remove: (R -> Boolean, %) -> %
from Collection R
- remove: (R, %) -> %
from Collection R
- removeDuplicates: % -> %
from Collection R
- reverse!: % -> %
from LinearAggregate R
- reverse: % -> %
from LinearAggregate R
- rightTrim: (%, R) -> %
from LinearAggregate R
- select: (R -> Boolean, %) -> %
from Collection R
- setelt!: (%, Integer, R) -> R
from EltableAggregate(Integer, R)
- setelt!: (%, UniversalSegment Integer, R) -> R
from LinearAggregate R
- size?: (%, NonNegativeInteger) -> Boolean
from Aggregate
- smaller?: (%, %) -> Boolean if R has Comparable
from Comparable
- sort!: % -> % if R has OrderedSet
from LinearAggregate R
- sort!: ((R, R) -> Boolean, %) -> %
from LinearAggregate R
- sort: % -> % if R has OrderedSet
from LinearAggregate R
- sort: ((R, R) -> Boolean, %) -> %
from LinearAggregate R
- sorted?: % -> Boolean if R has OrderedSet
from LinearAggregate R
- sorted?: ((R, R) -> Boolean, %) -> Boolean
from LinearAggregate R
- trim: (%, R) -> %
from LinearAggregate R
- zero?: % -> Boolean
from VectorCategory R
- zero: NonNegativeInteger -> %
from VectorCategory R
Comparable if R has Comparable
ConvertibleTo InputForm if R has ConvertibleTo InputForm
Eltable(UniversalSegment Integer, %)
Evalable R if R has Evalable R
InnerEvalable(R, R) if R has Evalable R
OneDimensionalArrayAggregate R
OrderedSet if R has OrderedSet
PartialOrder if R has OrderedSet