MoebiusTransform FΒΆ
moebius.spad line 1 [edit on github]
F: Field
MoebiusTransform(F
) is the domain of fractional linear (Moebius) transformations over F
.
- 1: %
from MagmaWithUnit
- ^: (%, Integer) -> %
from Group
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- commutator: (%, %) -> %
from Group
- eval: (%, F) -> F
eval(m, x)
returns(a*x + b)/(c*x + d)
wherem = moebius(a, b, c, d)
(see moebius).
- eval: (%, OnePointCompletion F) -> OnePointCompletion F
eval(m, x)
returns(a*x + b)/(c*x + d)
wherem = moebius(a, b, c, d)
(see moebius).
- latex: % -> String
from SetCategory
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- moebius: (F, F, F, F) -> %
moebius(a, b, c, d)
returnsmatrix [[a, b], [c, d]]
.
- one?: % -> Boolean
from MagmaWithUnit
- recip: % -> %
recip(m)
= recip() *m
- recip: % -> Union(%, failed)
from MagmaWithUnit
- recip: () -> %
recip()
returnsmatrix [[0, 1], [1, 0]]
representing the mapx -> 1 / x
.
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from MagmaWithUnit
- scale: (%, F) -> %
scale(m, h)
returnsscale(h) * m
(see shift).
- scale: F -> %
scale(k)
returnsmatrix [[k, 0], [0, 1]]
representing the mapx -> k * x
.
- shift: (%, F) -> %
shift(m, h)
returnsshift(h) * m
(see shift).
- shift: F -> %
shift(k)
returnsmatrix [[1, k], [0, 1]]
representing the mapx -> x + k
.