GeneralModulePolynomial(vl, R, IS, E, ff, P)ΒΆ
modmonom.spad line 31 [edit on github]
IS: OrderedSet
E: DirectProductCategory(# vl, NonNegativeInteger)
ff: (Record(index: IS, exponent: E), Record(index: IS, exponent: E)) -> Boolean
P: PolynomialCategory(R, E, OrderedVariableList vl)
This package undocumented
- 0: %
from AbelianMonoid
- *: (%, P) -> %
from RightModule P
- *: (%, R) -> %
from RightModule R
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (P, %) -> %
p*x
undocumented- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- build: (R, IS, E) -> %
build(r, i, e)
undocumented
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- latex: % -> String
from SetCategory
- leadingCoefficient: % -> R
leadingCoefficient(x)
undocumented
- leadingExponent: % -> E
leadingExponent(x)
undocumented
- leadingIndex: % -> IS
leadingIndex(x)
undocumented
- leadingMonomial: % -> ModuleMonomial(IS, E, ff)
leadingMonomial(x)
undocumented
- monomial: (R, ModuleMonomial(IS, E, ff)) -> %
monomial(r, x)
undocumented
- multMonom: (R, E, %) -> %
multMonom(r, e, x)
undocumented
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- reductum: % -> %
reductum(x)
undocumented
- sample: %
from AbelianMonoid
- subtractIfCan: (%, %) -> Union(%, failed)
- unitVector: IS -> %
unitVector(x)
undocumented
- zero?: % -> Boolean
from AbelianMonoid
BiModule(P, P)
BiModule(R, R)
Module P
Module R