FreeGroup SΒΆ
free.spad line 383 [edit on github]
S: SetCategory
The free group on a set S
is the group of finite products of the form reduce(*, [si ^ ni])
where the si
's
are in S
, and the ni
's
are integers. The multiplication is not commutative.
- 1: %
from MagmaWithUnit
- *: (%, S) -> %
x * s
returns the product ofx
bys
on the right.
- *: (S, %) -> %
s * x
returns the product ofx
bys
on the left.
- ^: (%, Integer) -> %
from Group
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- ^: (S, Integer) -> %
s ^ n
returns the product ofs
by itselfn
times.
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: S -> %
from CoercibleFrom S
- commutator: (%, %) -> %
from Group
- factors: % -> List Record(gen: S, exp: Integer)
factors(a1\^e1, ..., an\^en)
returns[[a1, e1], ..., [an, en]]
.
- latex: % -> String
from SetCategory
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- mapExpon: (Integer -> Integer, %) -> %
mapExpon(f, a1\^e1 ... an\^en)
returnsa1\^f(e1) ... an\^f(en)
.
- mapGen: (S -> S, %) -> %
mapGen(f, a1\^e1 ... an\^en)
returnsf(a1)\^e1 ... f(an)\^en
.
- nthFactor: (%, Integer) -> S
nthFactor(x, n)
returns the factor of the n^th monomial ofx
.
- one?: % -> Boolean
from MagmaWithUnit
- recip: % -> Union(%, failed)
from MagmaWithUnit
- retract: % -> S
from RetractableTo S
- retractIfCan: % -> Union(S, failed)
from RetractableTo S
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from MagmaWithUnit
- size: % -> NonNegativeInteger
size(x)
returns the number of monomials inx
.
- smaller?: (%, %) -> Boolean if S has Comparable
from Comparable
Comparable if S has Comparable