FractionalIdealAsModule(R, F, UP, A, ibasis)ΒΆ
divisor.spad line 463 [edit on github]
A: FramedAlgebra(F, UP)
ibasis: Vector A
Module representation of fractional ideals.
- 1: %
from MagmaWithUnit
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- basis: % -> Vector A
basis((f1, ..., fn))
= the vector[f1, ..., fn]
.
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- latex: % -> String
from SetCategory
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- module: FractionalIdeal(R, F, UP, A) -> % if A has RetractableTo F
module(I)
returnsI
viewed has a module overR
.
- module: Vector A -> %
module([f1, ..., fn])
= the module generated by(f1, ..., fn)
overR
.
- norm: % -> F
norm(f)
returns the norm of the modulef
.
- one?: % -> Boolean
from MagmaWithUnit
- recip: % -> Union(%, failed)
from MagmaWithUnit
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from MagmaWithUnit