ElementaryFunctionDefiniteIntegration(R, F)¶
defintef.spad line 1 [edit on github]
R: Join(PolynomialFactorizationExplicit, Comparable, CharacteristicZero, RetractableTo Integer, LinearlyExplicitOver Integer)
F: Join(TranscendentalFunctionCategory, PrimitiveFunctionCategory, AlgebraicallyClosedFunctionSpace R)
ElementaryFunctionDefiniteIntegration provides functions to compute definite integrals of elementary functions.
- innerint: (F, Symbol, OrderedCompletion F, OrderedCompletion F, Boolean) -> Union(f1: OrderedCompletion F, f2: List OrderedCompletion F, fail: failed, pole: potentialPole)
innerint(f, x, a, b, ignore?)
should be local but conditional
- integrate: (F, SegmentBinding OrderedCompletion F) -> Union(f1: OrderedCompletion F, f2: List OrderedCompletion F, fail: failed, pole: potentialPole)
integrate(f, x = a..b)
returns the integral off(x)dx
from a tob
. Error: iff
has a pole forx
between a andb
.
- integrate: (F, SegmentBinding OrderedCompletion F, String) -> Union(f1: OrderedCompletion F, f2: List OrderedCompletion F, fail: failed, pole: potentialPole)
integrate(f, x = a..b, "noPole")
returns the integral off(x)dx
from a tob
. If it is not possible to check whetherf
has a pole forx
between a andb
(because of parameters), then this function will assume thatf
has no such pole. Error: iff
has a pole forx
between a andb
or if the last argument is not “noPole”.