XPBWPolynomial(VarSet, R)ΒΆ
xlpoly.spad line 757 [edit on github]
- VarSet: OrderedSet 
This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations.   Author: Michel Petitot (petitot@lifl.fr).
- 0: %
- from AbelianMonoid 
- 1: %
- from MagmaWithUnit 
- *: (%, %) -> %
- from Magma 
- *: (%, R) -> %
- from RightModule R 
- *: (Integer, %) -> %
- from AbelianGroup 
- *: (NonNegativeInteger, %) -> %
- from AbelianMonoid 
- *: (PositiveInteger, %) -> %
- from AbelianSemiGroup 
- *: (R, %) -> %
- from LeftModule R 
- *: (VarSet, %) -> %
- from XFreeAlgebra(VarSet, R) 
- +: (%, %) -> %
- from AbelianSemiGroup 
- -: % -> %
- from AbelianGroup 
- -: (%, %) -> %
- from AbelianGroup 
- ^: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- ^: (%, PositiveInteger) -> %
- from Magma 
- annihilate?: (%, %) -> Boolean
- from Rng 
- antiCommutator: (%, %) -> %
- associator: (%, %, %) -> %
- from NonAssociativeRng 
- characteristic: () -> NonNegativeInteger
- from NonAssociativeRing 
- coef: (%, %) -> R
- from XFreeAlgebra(VarSet, R) 
- coef: (%, FreeMonoid VarSet) -> R
- from XFreeAlgebra(VarSet, R) 
- coefficient: (%, PoincareBirkhoffWittLyndonBasis VarSet) -> R
- from FreeModuleCategory(R, PoincareBirkhoffWittLyndonBasis VarSet) 
- coefficients: % -> List R
- from FreeModuleCategory(R, PoincareBirkhoffWittLyndonBasis VarSet) 
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- coerce: % -> XDistributedPolynomial(VarSet, R)
- coerce(p)returns- pas a distributed polynomial.
- coerce: % -> XRecursivePolynomial(VarSet, R)
- coerce(p)returns- pas a recursive polynomial.
- coerce: FreeMonoid VarSet -> %
- from CoercibleFrom FreeMonoid VarSet 
- coerce: Integer -> %
- from NonAssociativeRing 
- coerce: LiePolynomial(VarSet, R) -> %
- coerce(p)returns- p.
- coerce: R -> %
- from XAlgebra R 
- coerce: VarSet -> %
- from XFreeAlgebra(VarSet, R) 
- commutator: (%, %) -> %
- from NonAssociativeRng 
- constant?: % -> Boolean
- from XFreeAlgebra(VarSet, R) 
- constant: % -> R
- from XFreeAlgebra(VarSet, R) 
- construct: List Record(k: PoincareBirkhoffWittLyndonBasis VarSet, c: R) -> %
- from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis VarSet) 
- constructOrdered: List Record(k: PoincareBirkhoffWittLyndonBasis VarSet, c: R) -> %
- from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis VarSet) 
- degree: % -> NonNegativeInteger
- from XPolynomialsCat(VarSet, R) 
- exp: (%, NonNegativeInteger) -> % if R has Module Fraction Integer
- exp(p, n)returns the exponential of- p(truncated up to order- n).
- latex: % -> String
- from SetCategory 
- leadingCoefficient: % -> R
- from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis VarSet) 
- leadingMonomial: % -> %
- from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis VarSet) 
- leadingSupport: % -> PoincareBirkhoffWittLyndonBasis VarSet
- from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis VarSet) 
- leadingTerm: % -> Record(k: PoincareBirkhoffWittLyndonBasis VarSet, c: R)
- from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis VarSet) 
- leftPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- leftPower: (%, PositiveInteger) -> %
- from Magma 
- leftRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- LiePolyIfCan: % -> Union(LiePolynomial(VarSet, R), failed)
- LiePolyIfCan(p)return- pif- pis a Lie polynomial.
- linearExtend: (PoincareBirkhoffWittLyndonBasis VarSet -> R, %) -> R
- from FreeModuleCategory(R, PoincareBirkhoffWittLyndonBasis VarSet) 
- listOfTerms: % -> List Record(k: PoincareBirkhoffWittLyndonBasis VarSet, c: R)
- from IndexedDirectProductCategory(R, PoincareBirkhoffWittLyndonBasis VarSet) 
- log: (%, NonNegativeInteger) -> % if R has Module Fraction Integer
- log(p, n)returns the logarithm of- p(truncated up to order- n).
- lquo: (%, %) -> %
- from XFreeAlgebra(VarSet, R) 
- lquo: (%, FreeMonoid VarSet) -> %
- from XFreeAlgebra(VarSet, R) 
- lquo: (%, VarSet) -> %
- from XFreeAlgebra(VarSet, R) 
- map: (R -> R, %) -> %
- from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis VarSet) 
- maxdeg: % -> FreeMonoid VarSet
- from XPolynomialsCat(VarSet, R) 
- mindeg: % -> FreeMonoid VarSet
- from XFreeAlgebra(VarSet, R) 
- mindegTerm: % -> Record(k: FreeMonoid VarSet, c: R)
- from XFreeAlgebra(VarSet, R) 
- mirror: % -> %
- from XFreeAlgebra(VarSet, R) 
- monomial?: % -> Boolean
- from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis VarSet) 
- monomial: (R, FreeMonoid VarSet) -> %
- from XFreeAlgebra(VarSet, R) 
- monomial: (R, PoincareBirkhoffWittLyndonBasis VarSet) -> %
- from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis VarSet) 
- monomials: % -> List %
- from FreeModuleCategory(R, PoincareBirkhoffWittLyndonBasis VarSet) 
- numberOfMonomials: % -> NonNegativeInteger
- from IndexedDirectProductCategory(R, PoincareBirkhoffWittLyndonBasis VarSet) 
- one?: % -> Boolean
- from MagmaWithUnit 
- opposite?: (%, %) -> Boolean
- from AbelianMonoid 
- plenaryPower: (%, PositiveInteger) -> %
- from NonAssociativeAlgebra R 
- product: (%, %, NonNegativeInteger) -> %
- product(a, b, n)returns- a*b(truncated up to order- n).
- quasiRegular?: % -> Boolean
- from XFreeAlgebra(VarSet, R) 
- quasiRegular: % -> %
- from XFreeAlgebra(VarSet, R) 
- recip: % -> Union(%, failed)
- from MagmaWithUnit 
- reductum: % -> %
- from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis VarSet) 
- retract: % -> FreeMonoid VarSet
- from RetractableTo FreeMonoid VarSet 
- retract: % -> R
- from RetractableTo R 
- retractIfCan: % -> Union(FreeMonoid VarSet, failed)
- from RetractableTo FreeMonoid VarSet 
- retractIfCan: % -> Union(R, failed)
- from RetractableTo R 
- rightPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- rightPower: (%, PositiveInteger) -> %
- from Magma 
- rightRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- rquo: (%, %) -> %
- from XFreeAlgebra(VarSet, R) 
- rquo: (%, FreeMonoid VarSet) -> %
- from XFreeAlgebra(VarSet, R) 
- rquo: (%, VarSet) -> %
- from XFreeAlgebra(VarSet, R) 
- sample: %
- from AbelianMonoid 
- sh: (%, %) -> %
- from XFreeAlgebra(VarSet, R) 
- sh: (%, NonNegativeInteger) -> %
- from XFreeAlgebra(VarSet, R) 
- smaller?: (%, %) -> Boolean if R has Comparable
- from Comparable 
- subtractIfCan: (%, %) -> Union(%, failed)
- support: % -> List PoincareBirkhoffWittLyndonBasis VarSet
- from FreeModuleCategory(R, PoincareBirkhoffWittLyndonBasis VarSet) 
- trunc: (%, NonNegativeInteger) -> %
- from XPolynomialsCat(VarSet, R) 
- varList: % -> List VarSet
- from XFreeAlgebra(VarSet, R) 
- zero?: % -> Boolean
- from AbelianMonoid 
Algebra R
BiModule(%, %)
BiModule(R, R)
CoercibleFrom FreeMonoid VarSet
Comparable if R has Comparable
FreeModuleCategory(R, PoincareBirkhoffWittLyndonBasis VarSet)
IndexedDirectProductCategory(R, PoincareBirkhoffWittLyndonBasis VarSet)
IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis VarSet)
Module R
noZeroDivisors if R has noZeroDivisors
RetractableTo FreeMonoid VarSet
XAlgebra R
XFreeAlgebra(VarSet, R)
XPolynomialsCat(VarSet, R)