# QuaternionCategory RΒΆ

QuaternionCategory describes the category of quaternions and implements functions that are not representation specific.

- 0: %
- from AbelianMonoid
- 1: %
- from MagmaWithUnit
- *: (%, %) -> %
- from Magma
- *: (%, Fraction Integer) -> % if R has Field
- from RightModule Fraction Integer
- *: (%, R) -> %
- from RightModule R
- *: (Fraction Integer, %) -> % if R has Field
- from LeftModule Fraction Integer
- *: (Integer, %) -> %
- from AbelianGroup
- *: (NonNegativeInteger, %) -> %
- from AbelianMonoid
- *: (PositiveInteger, %) -> %
- from AbelianSemiGroup
- *: (R, %) -> %
- from LeftModule R
- +: (%, %) -> %
- from AbelianSemiGroup
- -: % -> %
- from AbelianGroup
- -: (%, %) -> %
- from AbelianGroup
- <: (%, %) -> Boolean if R has OrderedSet
- from PartialOrder
- <=: (%, %) -> Boolean if R has OrderedSet
- from PartialOrder
- =: (%, %) -> Boolean
- from BasicType
- >: (%, %) -> Boolean if R has OrderedSet
- from PartialOrder
- >=: (%, %) -> Boolean if R has OrderedSet
- from PartialOrder
- ^: (%, Integer) -> % if R has Field
- from DivisionRing
- ^: (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
- from Magma
- ~=: (%, %) -> Boolean
- from BasicType

- abs: % -> R if R has RealNumberSystem
`abs(q)`

computes the absolute value of quaternion`q`

(sqrt of norm).- annihilate?: (%, %) -> Boolean
- from Rng
- antiCommutator: (%, %) -> %
- from NonAssociativeSemiRng
- associates?: (%, %) -> Boolean if R has EntireRing
- from EntireRing
- associator: (%, %, %) -> %
- from NonAssociativeRng
- characteristic: () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if R has CharacteristicNonZero
- from CharacteristicNonZero
- coerce: % -> OutputForm
- from CoercibleTo OutputForm
- coerce: Fraction Integer -> % if R has RetractableTo Fraction Integer or R has Field
- from Algebra Fraction Integer
- coerce: Integer -> %
- from NonAssociativeRing
- coerce: R -> %
- from RetractableTo R
- commutator: (%, %) -> %
- from NonAssociativeRng

- conjugate: % -> %
`conjugate(q)`

negates the imaginary parts of quaternion`q`

.- convert: % -> InputForm if R has ConvertibleTo InputForm
- from ConvertibleTo InputForm
- D: % -> % if R has DifferentialRing
- from DifferentialRing
- D: (%, List Symbol) -> % if R has PartialDifferentialRing Symbol
- from PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol
- from PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> % if R has DifferentialRing
- from DifferentialRing
- D: (%, R -> R) -> %
- from DifferentialExtension R
- D: (%, R -> R, NonNegativeInteger) -> %
- from DifferentialExtension R
- D: (%, Symbol) -> % if R has PartialDifferentialRing Symbol
- from PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol
- from PartialDifferentialRing Symbol
- differentiate: % -> % if R has DifferentialRing
- from DifferentialRing
- differentiate: (%, List Symbol) -> % if R has PartialDifferentialRing Symbol
- from PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol
- from PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> % if R has DifferentialRing
- from DifferentialRing
- differentiate: (%, R -> R) -> %
- from DifferentialExtension R
- differentiate: (%, R -> R, NonNegativeInteger) -> %
- from DifferentialExtension R
- differentiate: (%, Symbol) -> % if R has PartialDifferentialRing Symbol
- from PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol
- from PartialDifferentialRing Symbol
- elt: (%, R) -> % if R has Eltable(R, R)
- from Eltable(R, %)
- eval: (%, Equation R) -> % if R has Evalable R
- from Evalable R
- eval: (%, List Equation R) -> % if R has Evalable R
- from Evalable R
- eval: (%, List R, List R) -> % if R has Evalable R
- from InnerEvalable(R, R)
- eval: (%, List Symbol, List R) -> % if R has InnerEvalable(Symbol, R)
- from InnerEvalable(Symbol, R)
- eval: (%, R, R) -> % if R has Evalable R
- from InnerEvalable(R, R)
- eval: (%, Symbol, R) -> % if R has InnerEvalable(Symbol, R)
- from InnerEvalable(Symbol, R)
- exquo: (%, %) -> Union(%, failed) if R has EntireRing
- from EntireRing
- hash: % -> SingleInteger
- from SetCategory
- hashUpdate!: (HashState, %) -> HashState
- from SetCategory

- imagI: % -> R
`imagI(q)`

extracts the imaginary`i`

part of quaternion`q`

.

- imagJ: % -> R
`imagJ(q)`

extracts the imaginary`j`

part of quaternion`q`

.

- imagK: % -> R
`imagK(q)`

extracts the imaginary`k`

part of quaternion`q`

.- inv: % -> % if R has Field
- from DivisionRing
- latex: % -> String
- from SetCategory
- leftPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
- from Magma
- leftRecip: % -> Union(%, failed)
- from MagmaWithUnit
- map: (R -> R, %) -> %
- from FullyEvalableOver R
- max: (%, %) -> % if R has OrderedSet
- from OrderedSet
- min: (%, %) -> % if R has OrderedSet
- from OrderedSet

- norm: % -> R
`norm(q)`

computes the norm of`q`

(the sum of the squares of the components).- one?: % -> Boolean
- from MagmaWithUnit
- opposite?: (%, %) -> Boolean
- from AbelianMonoid

- quatern: (R, R, R, R) -> %
`quatern(r, i, j, k)`

constructs a quaternion from scalars.

- rational: % -> Fraction Integer if R has IntegerNumberSystem
`rational(q)`

tries to convert`q`

into a rational number. Error: if this is not possible. If`rational?(q)`

is`true`

, the conversion will be done and the rational number returned.

- rational?: % -> Boolean if R has IntegerNumberSystem
`rational?(q)`

returns *`true`

* if all the imaginary parts of`q`

are zero and the real part can be converted into a rational number, and *`false`

* otherwise.

- rationalIfCan: % -> Union(Fraction Integer, failed) if R has IntegerNumberSystem
`rationalIfCan(q)`

returns`q`

as a rational number, or “failed” if this is not possible. Note: if`rational?(q)`

is`true`

, the conversion can be done and the rational number will be returned.

- real: % -> R
`real(q)`

extracts the real part of quaternion`q`

.- recip: % -> Union(%, failed)
- from MagmaWithUnit
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if R has LinearlyExplicitOver Integer
- from LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix R, vec: Vector R)
- from LinearlyExplicitOver R
- reducedSystem: Matrix % -> Matrix Integer if R has LinearlyExplicitOver Integer
- from LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix R
- from LinearlyExplicitOver R
- retract: % -> Fraction Integer if R has RetractableTo Fraction Integer
- from RetractableTo Fraction Integer
- retract: % -> Integer if R has RetractableTo Integer
- from RetractableTo Integer
- retract: % -> R
- from RetractableTo R
- retractIfCan: % -> Union(Fraction Integer, failed) if R has RetractableTo Fraction Integer
- from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed) if R has RetractableTo Integer
- from RetractableTo Integer
- retractIfCan: % -> Union(R, failed)
- from RetractableTo R
- rightPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
- from Magma
- rightRecip: % -> Union(%, failed)
- from MagmaWithUnit
- sample: %
- from AbelianMonoid
- smaller?: (%, %) -> Boolean if R has OrderedSet
- from Comparable
- subtractIfCan: (%, %) -> Union(%, failed)
- from CancellationAbelianMonoid
- unit?: % -> Boolean if R has EntireRing
- from EntireRing
- unitCanonical: % -> % if R has EntireRing
- from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if R has EntireRing
- from EntireRing
- zero?: % -> Boolean
- from AbelianMonoid

Algebra Fraction Integer if R has Field

Algebra R

BiModule(%, %)

BiModule(Fraction Integer, Fraction Integer) if R has Field

BiModule(R, R)

CharacteristicNonZero if R has CharacteristicNonZero

CharacteristicZero if R has CharacteristicZero

Comparable if R has OrderedSet

ConvertibleTo InputForm if R has ConvertibleTo InputForm

DifferentialRing if R has DifferentialRing

DivisionRing if R has Field

Eltable(R, %) if R has Eltable(R, R)

EntireRing if R has EntireRing

Evalable R if R has Evalable R

InnerEvalable(R, R) if R has Evalable R

InnerEvalable(Symbol, R) if R has InnerEvalable(Symbol, R)

LeftModule Fraction Integer if R has Field

LinearlyExplicitOver Integer if R has LinearlyExplicitOver Integer

Module Fraction Integer if R has Field

Module R

noZeroDivisors if R has EntireRing

OrderedSet if R has OrderedSet

PartialDifferentialRing Symbol if R has PartialDifferentialRing Symbol

PartialOrder if R has OrderedSet

RetractableTo Fraction Integer if R has RetractableTo Fraction Integer

RetractableTo Integer if R has RetractableTo Integer

RightModule Fraction Integer if R has Field