IntegerMod pΒΆ

fmod.spad line 1

IntegerMod(n) creates the ring of integers reduced modulo the integer n.

0: %
from AbelianMonoid
1: %
from MagmaWithUnit
*: (%, %) -> %
from Magma
*: (Integer, %) -> %
from AbelianGroup
*: (NonNegativeInteger, %) -> %
from AbelianMonoid
*: (PositiveInteger, %) -> %
from AbelianSemiGroup
+: (%, %) -> %
from AbelianSemiGroup
-: % -> %
from AbelianGroup
-: (%, %) -> %
from AbelianGroup
=: (%, %) -> Boolean
from BasicType
^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
^: (%, PositiveInteger) -> %
from Magma
~=: (%, %) -> Boolean
from BasicType
annihilate?: (%, %) -> Boolean
from Rng
antiCommutator: (%, %) -> %
from NonAssociativeSemiRng
associator: (%, %, %) -> %
from NonAssociativeRng
characteristic: () -> NonNegativeInteger
from NonAssociativeRing
coerce: % -> %
from Algebra %
coerce: % -> OutputForm
from CoercibleTo OutputForm
coerce: Integer -> %
from NonAssociativeRing
commutator: (%, %) -> %
from NonAssociativeRng
convert: % -> InputForm
from ConvertibleTo InputForm
convert: % -> Integer
from ConvertibleTo Integer
enumerate: () -> List %
from Finite
hash: % -> SingleInteger
from SetCategory
hashUpdate!: (HashState, %) -> HashState
from SetCategory
index: PositiveInteger -> %
from Finite
init: %
from StepThrough
latex: % -> String
from SetCategory
leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower: (%, PositiveInteger) -> %
from Magma
leftRecip: % -> Union(%, failed)
from MagmaWithUnit
lookup: % -> PositiveInteger
from Finite
nextItem: % -> Union(%, failed)
from StepThrough
one?: % -> Boolean
from MagmaWithUnit
opposite?: (%, %) -> Boolean
from AbelianMonoid
random: () -> %
from Finite
recip: % -> Union(%, failed)
from MagmaWithUnit
rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower: (%, PositiveInteger) -> %
from Magma
rightRecip: % -> Union(%, failed)
from MagmaWithUnit
sample: %
from AbelianMonoid
size: () -> NonNegativeInteger
from Finite
smaller?: (%, %) -> Boolean
from Comparable
subtractIfCan: (%, %) -> Union(%, failed)
from CancellationAbelianMonoid
zero?: % -> Boolean
from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianSemiGroup

Algebra %

BasicType

BiModule(%, %)

CancellationAbelianMonoid

CoercibleTo OutputForm

CommutativeRing

CommutativeStar

Comparable

ConvertibleTo InputForm

ConvertibleTo Integer

Finite

LeftModule %

Magma

MagmaWithUnit

Module %

Monoid

NonAssociativeRing

NonAssociativeRng

NonAssociativeSemiRing

NonAssociativeSemiRng

RightModule %

Ring

Rng

SemiGroup

SemiRing

SemiRng

SetCategory

StepThrough

unitsKnown