# Guess(F, S, EXPRR, retract, coerce)ΒΆ

mantepse.spad line 1292 [edit on github]

F: Join(Field, PolynomialFactorizationExplicit)

S: GcdDomain

EXPRR: Join(FunctionSpace Integer, IntegralDomain, RetractableTo Symbol, RetractableTo Integer, CombinatorialOpsCategory, PartialDifferentialRing Symbol) with

*: (%, %) -> %

/: (%, %) -> %

^: (%, %) -> %

denominator: % -> %

ground?: % -> Boolean

numerator: % -> %

retract: EXPRR -> F

coerce: F -> EXPRR

This package implements guessing of sequences. Packages for the most common cases are provided as GuessInteger, GuessPolynomial, etc.

- algDepHP: (List List F, List GuessOption) -> Record(degreeStream: Stream NonNegativeInteger, guessStream: UnivariateFormalPowerSeries F -> Stream UnivariateFormalPowerSeries F, guessModGen: NonNegativeInteger -> (List U32Vector, Integer, Integer) -> Vector U32Vector, testGen: List PositiveInteger -> UnivariateFormalPowerSeries SparseMultivariatePolynomial(F, NonNegativeInteger) -> Vector UnivariateFormalPowerSeries SparseMultivariatePolynomial(F, NonNegativeInteger), exprStream: (EXPRR, Symbol) -> Stream EXPRR, kind: Symbol, qvar: Symbol, A: (NonNegativeInteger, NonNegativeInteger, SparseUnivariatePolynomial S) -> S, AF: (NonNegativeInteger, NonNegativeInteger, UnivariateFormalPowerSeries SparseMultivariatePolynomial(F, NonNegativeInteger)) -> SparseMultivariatePolynomial(F, NonNegativeInteger), AX: (NonNegativeInteger, Symbol, EXPRR) -> EXPRR, C: NonNegativeInteger -> List S)
`algDepHP(list, options)`

returns a specification for Hermite-Pade approximation looking for algebraic dependencies

- diffHP: List GuessOption -> Record(degreeStream: Stream NonNegativeInteger, guessStream: UnivariateFormalPowerSeries F -> Stream UnivariateFormalPowerSeries F, guessModGen: NonNegativeInteger -> (List U32Vector, Integer, Integer) -> Vector U32Vector, testGen: List PositiveInteger -> UnivariateFormalPowerSeries SparseMultivariatePolynomial(F, NonNegativeInteger) -> Vector UnivariateFormalPowerSeries SparseMultivariatePolynomial(F, NonNegativeInteger), exprStream: (EXPRR, Symbol) -> Stream EXPRR, kind: Symbol, qvar: Symbol, A: (NonNegativeInteger, NonNegativeInteger, SparseUnivariatePolynomial S) -> S, AF: (NonNegativeInteger, NonNegativeInteger, UnivariateFormalPowerSeries SparseMultivariatePolynomial(F, NonNegativeInteger)) -> SparseMultivariatePolynomial(F, NonNegativeInteger), AX: (NonNegativeInteger, Symbol, EXPRR) -> EXPRR, C: NonNegativeInteger -> List S)
`diffHP options`

returns a specification for Hermite-Pade approximation with the differential operator

- diffHP: Symbol -> List GuessOption -> Record(degreeStream: Stream NonNegativeInteger, guessStream: UnivariateFormalPowerSeries F -> Stream UnivariateFormalPowerSeries F, guessModGen: NonNegativeInteger -> (List U32Vector, Integer, Integer) -> Vector U32Vector, testGen: List PositiveInteger -> UnivariateFormalPowerSeries SparseMultivariatePolynomial(F, NonNegativeInteger) -> Vector UnivariateFormalPowerSeries SparseMultivariatePolynomial(F, NonNegativeInteger), exprStream: (EXPRR, Symbol) -> Stream EXPRR, kind: Symbol, qvar: Symbol, A: (NonNegativeInteger, NonNegativeInteger, SparseUnivariatePolynomial S) -> S, AF: (NonNegativeInteger, NonNegativeInteger, UnivariateFormalPowerSeries SparseMultivariatePolynomial(F, NonNegativeInteger)) -> SparseMultivariatePolynomial(F, NonNegativeInteger), AX: (NonNegativeInteger, Symbol, EXPRR) -> EXPRR, C: NonNegativeInteger -> List S) if F has RetractableTo Symbol and S has RetractableTo Symbol
`diffHP options`

returns a specification for Hermite-Pade approximation with the $`q`

$-dilation operator

- guess: (List F, List GuessOption) -> List EXPRR
`guess(l, options)`

applies recursively guessRat to the successive differences and quotients of the list. The given options are used.

- guess: (List F, List((List F, List GuessOption) -> List EXPRR), List Symbol) -> List EXPRR
`guess(l, guessers, ops)`

applies recursively the given`guessers`

to the successive differences if ops contains the symbol guessSum and quotients if ops contains the symbol guessProduct to the list. Default options as described in GuessOptionFunctions0 are used.

- guess: (List F, List((List F, List GuessOption) -> List EXPRR), List Symbol, List GuessOption) -> List EXPRR
`guess(l, guessers, ops)`

applies recursively the given`guessers`

to the successive differences if ops contains the symbol`guessSum`

and quotients if ops contains the symbol`guessProduct`

to the list. The given options are used.

- guess: List F -> List EXPRR
`guess l`

applies recursively guessRat to the successive differences and quotients of the list. Default options as described in GuessOptionFunctions0 are used.

- guessADE: (List F, List GuessOption) -> List EXPRR
`guessADE(l, options)`

tries to find an algebraic differential equation for a generating function whose first Taylor coefficients are given by`l`

, using the given options.

- guessADE: List F -> List EXPRR
`guessADE l`

tries to find an algebraic differential equation for a generating function whose first Taylor coefficients are given by`l`

, using the default options described in GuessOptionFunctions0.

- guessADE: Symbol -> (List F, List GuessOption) -> List EXPRR if F has RetractableTo Symbol and S has RetractableTo Symbol
`guessADE q`

returns a guesser that tries to find an algebraic differential equation for a generating function whose first Taylor coefficients are given by`l`

, using the given options.

- guessAlg: (List F, List GuessOption) -> List EXPRR
`guessAlg(l, options)`

tries to find an algebraic equation for a generating function whose first Taylor coefficients are given by`l`

, using the given options. It is equivalent to guessADE(`l`

, options) with`maxDerivative == 0`

.

- guessAlg: List F -> List EXPRR
`guessAlg l`

tries to find an algebraic equation for a generating function whose first Taylor coefficients are given by`l`

, using the default options described in GuessOptionFunctions0. It is equivalent to guessADE(`l`

, maxDerivative`==`

0).

- guessAlgDep: (List List F, List GuessOption) -> List EXPRR
`guessAlgDep ll`

tries to find an algebraic dependence between several power series whose first Taylor coefficients are given by members of`ll`

, using the given options.

- guessAlgDep: List List F -> List EXPRR
`guessAlgDep ll`

tries to find an algebraic dependence between several power series whose first Taylor coefficients are given by members of`ll`

, using the default options described in GuessOptionFunctions0.

- guessBinRat: (List F, List GuessOption) -> List EXPRR
`guessBinRat(l, options)`

tries to find a function of the form`n+`

->binomial(a+b`n`

,`n`

)`r`

(`n`

), where`r`

(`n`

) is a rational function, that fits`l`

.

- guessBinRat: List F -> List EXPRR
`guessBinRat(l, options)`

tries to find a function of the form`n+`

->binomial(a+b`n`

,`n`

)`r`

(`n`

), where`r`

(`n`

) is a rational function, that fits`l`

.

- guessBinRat: Symbol -> (List F, List GuessOption) -> List EXPRR if F has RetractableTo Symbol and S has RetractableTo Symbol
`guessBinRat q`

returns a guesser that tries to find a function of the form`n+`

->qbinomial(a+b`n`

,`n`

)`r`

(`n`

), where`r`

(`q^n`

) is a`q`

-rational function, that fits`l`

.

- guessExpRat: (List F, List GuessOption) -> List EXPRR
`guessExpRat(l, options)`

tries to find a function of the form`n+`

->(a+b`n`

)`^n`

`r`

(`n`

), where`r`

(`n`

) is a rational function, that fits`l`

.

- guessExpRat: List F -> List EXPRR
`guessExpRat l`

tries to find a function of the form`n+`

->(a+b`n`

)`^n`

`r`

(`n`

), where`r`

(`n`

) is a rational function, that fits`l`

.

- guessExpRat: Symbol -> (List F, List GuessOption) -> List EXPRR if F has RetractableTo Symbol and S has RetractableTo Symbol
`guessExpRat q`

returns a guesser that tries to find a function of the form`n+`

->(a+b`q^n`

)`^n`

`r`

(`q^n`

), where`r`

(`q^n`

) is a`q`

-rational function, that fits`l`

.

- guessFE: (List F, List GuessOption) -> List EXPRR
`guessFE(l, options)`

tries to find an algebraic substitution equation for a generating function whose first Taylor coefficients are given by`l`

, using the given options.

- guessFE: List F -> List EXPRR
`guessFE l`

tries to find an algebraic substitution equation for a generating function whose first Taylor coefficients are given by`l`

, using the default options described in GuessOptionFunctions0.

- guessHolo: (List F, List GuessOption) -> List EXPRR
`guessHolo(l, options)`

tries to find an ordinary linear differential equation for a generating function whose first Taylor coefficients are given by`l`

, using the given options. It is equivalent to guessADE`(l, options)`

with`maxPower == 1`

.

- guessHolo: List F -> List EXPRR
`guessHolo l`

tries to find an ordinary linear differential equation for a generating function whose first Taylor coefficients are given by`l`

, using the default options described in GuessOptionFunctions0. It is equivalent to guessADE`(l, maxPower == 1)`

.

- guessHolo: Symbol -> (List F, List GuessOption) -> List EXPRR if F has RetractableTo Symbol and S has RetractableTo Symbol
`guessHolo q`

returns a guesser that tries to find a linear differential equation for a generating function whose first Taylor coefficients are given by`l`

, using the given options.

- guessPade: (List F, List GuessOption) -> List EXPRR
`guessPade(l, options)`

tries to find a rational function whose first Taylor coefficients are given by`l`

, using the given options. It is equivalent to guessADE`(l, maxDerivative == 0, maxPower == 1, allDegrees == true)`

.

- guessPade: List F -> List EXPRR
`guessPade(l, options)`

tries to find a rational function whose first Taylor coefficients are given by`l`

, using the default options described in GuessOptionFunctions0. It is equivalent to guessADE`(l, options)`

with`maxDerivative == 0, maxPower == 1, allDegrees == true`

.

- guessPRec: (List F, List GuessOption) -> List EXPRR
`guessPRec(l, options)`

tries to find a linear recurrence with polynomial coefficients whose first values are given by`l`

, using the given options. It is equivalent to guessRec`(l, options)`

with`maxPower == 1`

.

- guessPRec: List F -> List EXPRR
`guessPRec l`

tries to find a linear recurrence with polynomial coefficients whose first values are given by`l`

, using the default options described in GuessOptionFunctions0. It is equivalent to guessRec`(l, maxPower == 1)`

.

- guessPRec: Symbol -> (List F, List GuessOption) -> List EXPRR if F has RetractableTo Symbol and S has RetractableTo Symbol
`guessPRec q`

returns a guesser that tries to find a linear`q`

-recurrence with polynomial coefficients whose first values are given by`l`

, using the given options. It is equivalent to guessRec`(q)`

with`maxPower == 1`

.

- guessRat: (List F, List GuessOption) -> List EXPRR
`guessRat(l, options)`

tries to find a rational function whose first values are given by`l`

, using the given options. It is equivalent to guessRec`(l, maxShift == 0, maxPower == 1, allDegrees == true)`

.

- guessRat: List F -> List EXPRR
`guessRat l`

tries to find a rational function whose first values are given by`l`

, using the default options described in GuessOptionFunctions0. It is equivalent to guessRec`(l, maxShift == 0, maxPower == 1, allDegrees == true)`

.

- guessRat: Symbol -> (List F, List GuessOption) -> List EXPRR if F has RetractableTo Symbol and S has RetractableTo Symbol
`guessRat q`

returns a guesser that tries to find a`q`

-rational function whose first values are given by`l`

, using the given options. It is equivalent to guessRec with`(l, maxShift == 0, maxPower == 1, allDegrees == true)`

.

- guessRec: (List F, List GuessOption) -> List EXPRR
`guessRec(l, options)`

tries to find an ordinary difference equation whose first values are given by`l`

, using the given options.

- guessRec: List F -> List EXPRR
`guessRec l`

tries to find an ordinary difference equation whose first values are given by`l`

, using the default options described in GuessOptionFunctions0.

- guessRec: Symbol -> (List F, List GuessOption) -> List EXPRR if F has RetractableTo Symbol and S has RetractableTo Symbol
`guessRec q`

returns a guesser that finds an ordinary`q`

-difference equation whose first values are given by`l`

, using the given options.

- shiftHP: List GuessOption -> Record(degreeStream: Stream NonNegativeInteger, guessStream: UnivariateFormalPowerSeries F -> Stream UnivariateFormalPowerSeries F, guessModGen: NonNegativeInteger -> (List U32Vector, Integer, Integer) -> Vector U32Vector, testGen: List PositiveInteger -> UnivariateFormalPowerSeries SparseMultivariatePolynomial(F, NonNegativeInteger) -> Vector UnivariateFormalPowerSeries SparseMultivariatePolynomial(F, NonNegativeInteger), exprStream: (EXPRR, Symbol) -> Stream EXPRR, kind: Symbol, qvar: Symbol, A: (NonNegativeInteger, NonNegativeInteger, SparseUnivariatePolynomial S) -> S, AF: (NonNegativeInteger, NonNegativeInteger, UnivariateFormalPowerSeries SparseMultivariatePolynomial(F, NonNegativeInteger)) -> SparseMultivariatePolynomial(F, NonNegativeInteger), AX: (NonNegativeInteger, Symbol, EXPRR) -> EXPRR, C: NonNegativeInteger -> List S)
`shiftHP options`

returns a specification for Hermite-Pade approximation with the shift operator

- shiftHP: Symbol -> List GuessOption -> Record(degreeStream: Stream NonNegativeInteger, guessStream: UnivariateFormalPowerSeries F -> Stream UnivariateFormalPowerSeries F, guessModGen: NonNegativeInteger -> (List U32Vector, Integer, Integer) -> Vector U32Vector, testGen: List PositiveInteger -> UnivariateFormalPowerSeries SparseMultivariatePolynomial(F, NonNegativeInteger) -> Vector UnivariateFormalPowerSeries SparseMultivariatePolynomial(F, NonNegativeInteger), exprStream: (EXPRR, Symbol) -> Stream EXPRR, kind: Symbol, qvar: Symbol, A: (NonNegativeInteger, NonNegativeInteger, SparseUnivariatePolynomial S) -> S, AF: (NonNegativeInteger, NonNegativeInteger, UnivariateFormalPowerSeries SparseMultivariatePolynomial(F, NonNegativeInteger)) -> SparseMultivariatePolynomial(F, NonNegativeInteger), AX: (NonNegativeInteger, Symbol, EXPRR) -> EXPRR, C: NonNegativeInteger -> List S) if F has RetractableTo Symbol and S has RetractableTo Symbol
`shiftHP options`

returns a specification for Hermite-Pade approximation with the $`q`

$-shift operator, or, if`maxMixedDegree > 0`

for mixed shifts

- substHP: List GuessOption -> Record(degreeStream: Stream NonNegativeInteger, guessStream: UnivariateFormalPowerSeries F -> Stream UnivariateFormalPowerSeries F, guessModGen: NonNegativeInteger -> (List U32Vector, Integer, Integer) -> Vector U32Vector, testGen: List PositiveInteger -> UnivariateFormalPowerSeries SparseMultivariatePolynomial(F, NonNegativeInteger) -> Vector UnivariateFormalPowerSeries SparseMultivariatePolynomial(F, NonNegativeInteger), exprStream: (EXPRR, Symbol) -> Stream EXPRR, kind: Symbol, qvar: Symbol, A: (NonNegativeInteger, NonNegativeInteger, SparseUnivariatePolynomial S) -> S, AF: (NonNegativeInteger, NonNegativeInteger, UnivariateFormalPowerSeries SparseMultivariatePolynomial(F, NonNegativeInteger)) -> SparseMultivariatePolynomial(F, NonNegativeInteger), AX: (NonNegativeInteger, Symbol, EXPRR) -> EXPRR, C: NonNegativeInteger -> List S)
`substHP options`

returns a specification for Hermite-Pade approximation with the substitution operator