SpecialFunctionCategory¶
trigcat.spad line 235 [edit on github]
Category for the other special functions.
- abs: % -> %
 abs(x)returns the absolute value ofx.
- airyAi: % -> %
 airyAi(x)is the Airy functionAi(x).
- airyAiPrime: % -> %
 airyAiPrime(x)is the derivative of the Airy functionAi(x).
- airyBi: % -> %
 airyBi(x)is the Airy functionBi(x).
- airyBiPrime: % -> %
 airyBiPrime(x)is the derivative of the Airy functionBi(x).
- angerJ: (%, %) -> %
 angerJ(v, z)is the AngerJfunction.
- besselI: (%, %) -> %
 besselI(v, z)is the modified Bessel function of the first kind.
- besselJ: (%, %) -> %
 besselJ(v, z)is the Bessel function of the first kind.
- besselK: (%, %) -> %
 besselK(v, z)is the modified Bessel function of the second kind.
- besselY: (%, %) -> %
 besselY(v, z)is the Bessel function of the second kind.
- Beta: (%, %) -> %
 Beta(x, y)isGamma(x) * Gamma(y)/Gamma(x+y).
- Beta: (%, %, %) -> %
 Beta(x, a, b)is the incomplete Beta function.
- ceiling: % -> %
 ceiling(x)returns the smallest integer above or equalx.
- charlierC: (%, %, %) -> %
 charlierC(n, a, z)is the Charlier polynomial.
- conjugate: % -> %
 conjugate(x)returns the conjugate ofx.
- digamma: % -> %
 digamma(x)is the logarithmic derivative ofGamma(x)(often writtenpsi(x)in the literature).
- diracDelta: % -> %
 diracDelta(x)is unit mass at zeros ofx.
- ellipticE: % -> %
 ellipticE(m)is the complete elliptic integral of the second kind:ellipticE(m) = integrate(sqrt(1-m*t^2)/sqrt(1-t^2), t = 0..1).
- ellipticE: (%, %) -> %
 ellipticE(z, m)is the incomplete elliptic integral of the second kind:ellipticE(z, m) = integrate(sqrt(1-m*t^2)/sqrt(1-t^2), t = 0..z).
- ellipticF: (%, %) -> %
 ellipticF(z, m)is the incomplete elliptic integral of the first kind :ellipticF(z, m) = integrate(1/sqrt((1-t^2)*(1-m*t^2)), t = 0..z).
- ellipticK: % -> %
 ellipticK(m)is the complete elliptic integral of the first kind:ellipticK(m) = integrate(1/sqrt((1-t^2)*(1-m*t^2)), t = 0..1).
- ellipticPi: (%, %, %) -> %
 ellipticPi(z, n, m)is the incomplete elliptic integral of the third kind:ellipticPi(z, n, m) = integrate(1/((1-n*t^2)*sqrt((1-t^2)*(1-m*t^2))), t = 0..z).
- floor: % -> %
 floor(x)returns the largest integer below or equalx.
- fractionPart: % -> %
 fractionPart(x)returns the fractional part ofx. Note: fractionPart(x) =x- floor(x).
- Gamma: % -> %
 Gamma(x)is the Euler Gamma function.
- Gamma: (%, %) -> %
 Gamma(a, x)is the incomplete Gamma function.
- hahn_p: (%, %, %, %, %) -> %
 hahn_p(n, a, b, bar_a, bar_b, z)is the continuous Hahn polynomial.
- hahnQ: (%, %, %, %, %) -> %
 hahnQ(n, a, b, N, z)sthe Hahn polynomial.
- hahnR: (%, %, %, %, %) -> %
 hahnR(n, c, d, N, z)is the dual Hahn polynomial.
- hahnS: (%, %, %, %, %) -> %
 hahnS(n, a, b, c, z)is the continuous dual Hahn polynomial.
- hankelH1: (%, %) -> %
 hankelH1(v, z)is first Hankel function (Bessel function of the third kind).
- hankelH2: (%, %) -> %
 hankelH2(v, z)is the second Hankel function (Bessel function of the third kind).
- hermiteH: (%, %) -> %
 hermiteH(n, z)is the Hermite polynomial.
- hypergeometricF: (List %, List %, %) -> % if % has RetractableTo Integer
 hypergeometricF(la, lb, z)is the generalized hypergeometric function.
- jacobiCn: (%, %) -> %
 jacobiCn(z, m)is the Jacobi ellipticcnfunction, defined byjacobiCn(z, m)^2 + jacobiSn(z, m)^2 = 1andjacobiCn(0, m) = 1.
- jacobiDn: (%, %) -> %
 jacobiDn(z, m)is the Jacobi ellipticdnfunction, defined byjacobiDn(z, m)^2 + m*jacobiSn(z, m)^2 = 1andjacobiDn(0, m) = 1.
- jacobiP: (%, %, %, %) -> %
 jacobiP(n, a, b, z)is the Jacobi polynomial.
- jacobiSn: (%, %) -> %
 jacobiSn(z, m)is the Jacobi ellipticsnfunction, defined by the formulajacobiSn(ellipticF(z, m), m) = z.
- jacobiTheta: (%, %) -> %
 jacobiTheta(z, m)is the Jacobi Theta function in Jacobi notation.
- jacobiZeta: (%, %) -> %
 jacobiZeta(z, m)is the Jacobi elliptic zeta function, defined byD(jacobiZeta(z, m), z) = jacobiDn(z, m)^2 - ellipticE(m)/ellipticK(m)andjacobiZeta(0, m) = 0.
- kelvinBei: (%, %) -> %
 kelvinBei(v, z)is the Kelvin bei function defined by equalitykelvinBei(v, z) = imag(besselJ(v, exp(3*\%pi*\%i/4)*z))forzandvreal.
- kelvinBer: (%, %) -> %
 kelvinBer(v, z)is the Kelvin ber function defined by equalitykelvinBer(v, z) = real(besselJ(v, exp(3*\%pi*\%i/4)*z))forzandvreal.
- kelvinKei: (%, %) -> %
 kelvinKei(v, z)is the Kelvin kei function defined by equalitykelvinKei(v, z) = imag(exp(-v*\%pi*\%i/2)*besselK(v, exp(\%pi*\%i/4)*z))forzandvreal.
- kelvinKer: (%, %) -> %
 kelvinKer(v, z)is the Kelvin kei function defined by equalitykelvinKer(v, z) = real(exp(-v*\%pi*\%i/2)*besselK(v, exp(\%pi*\%i/4)*z))forzandvreal.
- krawtchoukK: (%, %, %, %) -> %
 krawtchoukK(n, p, N, z)is the Krawtchouk polynomial.
- kummerM: (%, %, %) -> %
 kummerM(mu, nu, z)is the KummerMfunction.
- kummerU: (%, %, %) -> %
 kummerU(mu, nu, z)is the KummerUfunction.
- laguerreL: (%, %, %) -> %
 laguerreL(n, a, z)is the Laguerre polynomial.
- lambertW: % -> %
 lambertW(z)=wis the principal branch of the solution to the equationwe^w = z.
- legendreP: (%, %, %) -> %
 legendreP(nu, mu, z)is the LegendrePfunction.
- legendreQ: (%, %, %) -> %
 legendreQ(nu, mu, z)is the LegendreQfunction.
- lerchPhi: (%, %, %) -> %
 lerchPhi(z, s, a)is the Lerch Phi function.
- lommelS1: (%, %, %) -> %
 lommelS1(mu, nu, z)is the Lommelsfunction.
- lommelS2: (%, %, %) -> %
 lommelS2(mu, nu, z)is the LommelSfunction.
- meijerG: (List %, List %, List %, List %, %) -> % if % has RetractableTo Integer
 meijerG(la, lb, lc, ld, z)is the meijerG function.
- meixnerM: (%, %, %, %) -> %
 meixnerM(n, b, c, z)is the Meixner polynomial.
- meixnerP: (%, %, %, %) -> %
 meixnerP(n, phi, lambda, z)is the Meixner–Pollaczek polynomial.
- polygamma: (%, %) -> %
 polygamma(k, x)is thek-thderivative ofdigamma(x), (often writtenpsi(k, x)in the literature).
- polylog: (%, %) -> %
 polylog(s, x)is the polylogarithm of ordersatx.
- racahR: (%, %, %, %, %, %) -> %
 racahR(n, a, b, c, d, z)is the Racah polynomial.
- riemannZeta: % -> %
 riemannZeta(z)is the Riemann Zeta function.
- sign: % -> %
 sign(x)returns the sign ofx.
- struveH: (%, %) -> %
 struveH(v, z)is the StruveHfunction.
- struveL: (%, %) -> %
 struveL(v, z)is the StruveLfunction defined by the formulastruveL(v, z) = -\%i^exp(-v*\%pi*\%i/2)*struveH(v, \%i*z).
- unitStep: % -> %
 unitStep(x)is 0 forxless than 0, 1 forxbigger or equal 0.
- weberE: (%, %) -> %
 weberE(v, z)is the WeberEfunction.
- weierstrassP: (%, %, %) -> %
 weierstrassP(g2, g3, z)is the WeierstrassPfunction.
- weierstrassPInverse: (%, %, %) -> %
 weierstrassPInverse(g2, g3, z)is the inverse of WeierstrassPfunction, defined by the formulaweierstrassP(g2, g3, weierstrassPInverse(g2, g3, z)) = z.
- weierstrassPPrime: (%, %, %) -> %
 weierstrassPPrime(g2, g3, z)is the derivative of WeierstrassPfunction.
- weierstrassSigma: (%, %, %) -> %
 weierstrassSigma(g2, g3, z)is the Weierstrass Sigma function.
- weierstrassZeta: (%, %, %) -> %
 weierstrassZeta(g2, g3, z)is the Weierstrass Zeta function.
- whittakerM: (%, %, %) -> %
 whittakerM(k, m, z)is the WhittakerMfunction.
- whittakerW: (%, %, %) -> %
 whittakerW(k, m, z)is the WhittakerWfunction.
- wilsonW: (%, %, %, %, %, %) -> %
 wilsonW(n, a, b, c, d, z)is the Wilson polynomial.