SpecialFunctionCategoryΒΆ
trigcat.spad line 235 [edit on github]
Category for the other special functions.
- abs: % -> %
abs(x)
returns the absolute value ofx
.
- airyAi: % -> %
airyAi(x)
is the Airy functionAi(x)
.
- airyAiPrime: % -> %
airyAiPrime(x)
is the derivative of the Airy functionAi(x)
.
- airyBi: % -> %
airyBi(x)
is the Airy functionBi(x)
.
- airyBiPrime: % -> %
airyBiPrime(x)
is the derivative of the Airy functionBi(x)
.
- angerJ: (%, %) -> %
angerJ(v, z)
is the AngerJ
function.
- besselI: (%, %) -> %
besselI(v, z)
is the modified Bessel function of the first kind.
- besselJ: (%, %) -> %
besselJ(v, z)
is the Bessel function of the first kind.
- besselK: (%, %) -> %
besselK(v, z)
is the modified Bessel function of the second kind.
- besselY: (%, %) -> %
besselY(v, z)
is the Bessel function of the second kind.
- Beta: (%, %) -> %
Beta(x, y)
isGamma(x) * Gamma(y)/Gamma(x+y)
.
- Beta: (%, %, %) -> %
Beta(x, a, b)
is the incomplete Beta function.
- ceiling: % -> %
ceiling(x)
returns the smallest integer above or equalx
.
- charlierC: (%, %, %) -> %
charlierC(n, a, z)
is the Charlier polynomial
- conjugate: % -> %
conjugate(x)
returns the conjugate ofx
.
- digamma: % -> %
digamma(x)
is the logarithmic derivative ofGamma(x)
(often writtenpsi(x)
in the literature).
- diracDelta: % -> %
diracDelta(x)
is unit mass at zeros ofx
.
- ellipticE: % -> %
ellipticE(m)
is the complete elliptic integral of the second kind:ellipticE(m) = integrate(sqrt(1-m*t^2)/sqrt(1-t^2), t = 0..1)
.
- ellipticE: (%, %) -> %
ellipticE(z, m)
is the incomplete elliptic integral of the second kind:ellipticE(z, m) = integrate(sqrt(1-m*t^2)/sqrt(1-t^2), t = 0..z)
.
- ellipticF: (%, %) -> %
ellipticF(z, m)
is the incomplete elliptic integral of the first kind :ellipticF(z, m) = integrate(1/sqrt((1-t^2)*(1-m*t^2)), t = 0..z)
.
- ellipticK: % -> %
ellipticK(m)
is the complete elliptic integral of the first kind:ellipticK(m) = integrate(1/sqrt((1-t^2)*(1-m*t^2)), t = 0..1)
.
- ellipticPi: (%, %, %) -> %
ellipticPi(z, n, m)
is the incomplete elliptic integral of the third kind:ellipticPi(z, n, m) = integrate(1/((1-n*t^2)*sqrt((1-t^2)*(1-m*t^2))), t = 0..z)
.
- floor: % -> %
floor(x)
returns the largest integer below or equalx
.
- fractionPart: % -> %
fractionPart(x)
returns the fractional part ofx
. Note: fractionPart(x
) =x
- floor(x
).
- Gamma: % -> %
Gamma(x)
is the Euler Gamma function.
- Gamma: (%, %) -> %
Gamma(a, x)
is the incomplete Gamma function.
- hankelH1: (%, %) -> %
hankelH1(v, z)
is first Hankel function (Bessel function of the third kind).
- hankelH2: (%, %) -> %
hankelH2(v, z)
is the second Hankel function (Bessel function of the third kind).
- hermiteH: (%, %) -> %
hermiteH(n, z)
is the Hermite polynomial
- hypergeometricF: (List %, List %, %) -> % if % has RetractableTo Integer
hypergeometricF(la, lb, z)
is the generalized hypergeometric function.
- jacobiCn: (%, %) -> %
jacobiCn(z, m)
is the Jacobi ellipticcn
function, defined byjacobiCn(z, m)^2 + jacobiSn(z, m)^2 = 1
andjacobiCn(0, m) = 1
.
- jacobiDn: (%, %) -> %
jacobiDn(z, m)
is the Jacobi ellipticdn
function, defined byjacobiDn(z, m)^2 + m*jacobiSn(z, m)^2 = 1
andjacobiDn(0, m) = 1
.
- jacobiP: (%, %, %, %) -> %
jacobiP(n, a, b, z)
is the Jacobi polynomial
- jacobiSn: (%, %) -> %
jacobiSn(z, m)
is the Jacobi ellipticsn
function, defined by the formulajacobiSn(ellipticF(z, m), m) = z
.
- jacobiTheta: (%, %) -> %
jacobiTheta(z, m)
is the Jacobi Theta function in Jacobi notation.
- jacobiZeta: (%, %) -> %
jacobiZeta(z, m)
is the Jacobi elliptic zeta function, defined byD(jacobiZeta(z, m), z) = jacobiDn(z, m)^2 - ellipticE(m)/ellipticK(m)
andjacobiZeta(0, m) = 0
.
- kelvinBei: (%, %) -> %
kelvinBei(v, z)
is the Kelvin bei function defined by equalitykelvinBei(v, z) = imag(besselJ(v, exp(3*\%pi*\%i/4)*z))
forz
andv
real.
- kelvinBer: (%, %) -> %
kelvinBer(v, z)
is the Kelvin ber function defined by equalitykelvinBer(v, z) = real(besselJ(v, exp(3*\%pi*\%i/4)*z))
forz
andv
real.
- kelvinKei: (%, %) -> %
kelvinKei(v, z)
is the Kelvin kei function defined by equalitykelvinKei(v, z) = imag(exp(-v*\%pi*\%i/2)*besselK(v, exp(\%pi*\%i/4)*z))
forz
andv
real.
- kelvinKer: (%, %) -> %
kelvinKer(v, z)
is the Kelvin kei function defined by equalitykelvinKer(v, z) = real(exp(-v*\%pi*\%i/2)*besselK(v, exp(\%pi*\%i/4)*z))
forz
andv
real.
- kummerM: (%, %, %) -> %
kummerM(mu, nu, z)
is the KummerM
function.
- kummerU: (%, %, %) -> %
kummerU(mu, nu, z)
is the KummerU
function.
- laguerreL: (%, %, %) -> %
laguerreL(n, a, z)
is the Laguerre polynomial
- lambertW: % -> %
lambertW(z)
=w
is the principial branch of the solution to the equationwe^w = z
.
- legendreP: (%, %, %) -> %
legendreP(nu, mu, z)
is the LegendreP
function.
- legendreQ: (%, %, %) -> %
legendreQ(nu, mu, z)
is the LegendreQ
function.
- lerchPhi: (%, %, %) -> %
lerchPhi(z, s, a)
is the Lerch Phi function.
- lommelS1: (%, %, %) -> %
lommelS1(mu, nu, z)
is the Lommels
function.
- lommelS2: (%, %, %) -> %
lommelS2(mu, nu, z)
is the LommelS
function.
- meijerG: (List %, List %, List %, List %, %) -> % if % has RetractableTo Integer
meijerG(la, lb, lc, ld, z)
is the meijerG function.
- meixnerM: (%, %, %, %) -> %
meixnerM(n, b, c, z)
is the Meixner polynomial
- polygamma: (%, %) -> %
polygamma(k, x)
is thek-th
derivative ofdigamma(x)
, (often writtenpsi(k, x)
in the literature).
- polylog: (%, %) -> %
polylog(s, x)
is the polylogarithm of orders
atx
.
- riemannZeta: % -> %
riemannZeta(z)
is the Riemann Zeta function.
- sign: % -> %
sign(x)
returns the sign ofx
.
- struveH: (%, %) -> %
struveH(v, z)
is the StruveH
function.
- struveL: (%, %) -> %
struveL(v, z)
is the StruveL
function defined by the formulastruveL(v, z) = -\%i^exp(-v*\%pi*\%i/2)*struveH(v, \%i*z)
.
- unitStep: % -> %
unitStep(x)
is 0 forx
less than 0, 1 forx
bigger or equal 0.
- weberE: (%, %) -> %
weberE(v, z)
is the WeberE
function.
- weierstrassP: (%, %, %) -> %
weierstrassP(g2, g3, z)
is the WeierstrassP
function.
- weierstrassPInverse: (%, %, %) -> %
weierstrassPInverse(g2, g3, z)
is the inverse of WeierstrassP
function, defined by the formulaweierstrassP(g2, g3, weierstrassPInverse(g2, g3, z)) = z
.
- weierstrassPPrime: (%, %, %) -> %
weierstrassPPrime(g2, g3, z)
is the derivative of WeierstrassP
function.
- weierstrassSigma: (%, %, %) -> %
weierstrassSigma(g2, g3, z)
is the Weierstrass Sigma function.
- weierstrassZeta: (%, %, %) -> %
weierstrassZeta(g2, g3, z)
is the Weierstrass Zeta function.
- whittakerM: (%, %, %) -> %
whittakerM(k, m, z)
is the WhittakerM
function.
- whittakerW: (%, %, %) -> %
whittakerW(k, m, z)
is the WhittakerW
function.