QuasiComponentPackage(R, E, V, P, TS)ΒΆ
regset.spad line 341 [edit on github]
R: GcdDomain
V: OrderedSet
P: RecursivePolynomialCategory(R, E, V)
TS: RegularTriangularSetCategory(R, E, V, P)
A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets.
- algebraicSort: List TS -> List TS
algebraicSort(lts)
sortslts
w
.r
.t
supDimElseRittWu?.
- branchIfCan: (List P, TS, List P, Boolean, Boolean, Boolean, Boolean, Boolean) -> Union(Record(eq: List P, tower: TS, ineq: List P), failed)
branchIfCan(leq, ts, lineq, b1, b2, b3, b4, b5)
is an internal subroutine, exported only for developement.
- infRittWu?: (List P, List P) -> Boolean
infRittWu?(lp1, lp2)
is an internal subroutine, exported only for developement.
- internalInfRittWu?: (List P, List P) -> Boolean
internalInfRittWu?(lp1, lp2)
is an internal subroutine, exported only for developement.
- internalSubPolSet?: (List P, List P) -> Boolean
internalSubPolSet?(lp1, lp2)
returnstrue
ifflp1
is a sub-set oflp2
assuming that these lists are sorted increasinglyw
.r
.t
. infRittWu?.
- internalSubQuasiComponent?: (TS, TS) -> Union(Boolean, failed)
internalSubQuasiComponent?(ts, us)
returns a booleanb
value if the fact that the regular zero set ofus
contains that ofts
can be decided (and in that caseb
gives this inclusion) otherwise returns"failed"
.
- moreAlgebraic?: (TS, TS) -> Boolean
moreAlgebraic?(ts, us)
returnsfalse
iffts
andus
are both empty, orts
has less elements thanus
, or some variable is algebraicw
.r
.t
.us
and is notw
.r
.t
.ts
.
- prepareDecompose: (List P, List TS, Boolean, Boolean) -> List Record(eq: List P, tower: TS, ineq: List P)
prepareDecompose(lp, lts, b1, b2)
is an internal subroutine, exported only for developement.
- removeSuperfluousCases: List Record(val: List P, tower: TS) -> List Record(val: List P, tower: TS)
removeSuperfluousCases(llpwt)
is an internal subroutine, exported only for developement.
- removeSuperfluousQuasiComponents: List TS -> List TS
removeSuperfluousQuasiComponents(lts)
removes fromlts
anyts
such thatsubQuasiComponent?(ts, us)
holds for anotherus
inlts
.
- startTable!: (String, String, String) -> Void
startTableGcd!(s1, s2, s3)
is an internal subroutine, exported only for developement.
- stopTable!: () -> Void
stopTableGcd!()
is an internal subroutine, exported only for developement.
- subCase?: (Record(val: List P, tower: TS), Record(val: List P, tower: TS)) -> Boolean
subCase?(lpwt1, lpwt2)
is an internal subroutine, exported only for developement.
- subPolSet?: (List P, List P) -> Boolean
subPolSet?(lp1, lp2)
returnstrue
ifflp1
is a sub-set oflp2
.
- subQuasiComponent?: (TS, List TS) -> Boolean
subQuasiComponent?(ts, lus)
returnstrue
iffsubQuasiComponent?(ts, us)
holds for oneus
inlus
.
- subQuasiComponent?: (TS, TS) -> Boolean
subQuasiComponent?(ts, us)
returnstrue
iff internalSubQuasiComponent? returnstrue
.
- subTriSet?: (TS, TS) -> Boolean
subTriSet?(ts, us)
returnstrue
iffts
is a sub-set ofus
.
- supDimElseRittWu?: (TS, TS) -> Boolean
supDimElseRittWu(ts, us)
returnstrue
iffts
has less elements thanus
otherwise ifts
has higher rank thanus
w
.r
.t
. Riit and Wu ordering.